精英家教网 > 高中数学 > 题目详情
方程
(x+1)2+y2
+
(x-1)2+y2
所表示的曲线是(  )
分析:设点A(-1,0),B(1,0),可得动点P(x,y)满足|PA|+|PB|=π(常数),根据椭圆的定义得到方程表示的曲线为一个椭圆.
解答:解:设点A(-1,0),B(1,0),动点P(x,y)
则|PA|=
(x+1)2+y2
,|PB|=
(x-1)2+y2

(x+1)2+y2
+
(x-1)2+y2

∴|PA|+|PB|=π(常数),
根据A、B的距离为2<π,可得方程表示的曲线是以A、B为焦点的椭圆
故选:B
点评:本题给出一个方程,问方程表示的曲线.着重考查了椭圆的定义和两点的距离公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(x-1)2+(y+
3
)2=1
的切线方程中有一个是(  )
A、x-y=0B、x+y=0
C、x=0D、y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(三选一,考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(坐标系与参数方程选做题)在直角坐标系中圆C的参数方程为
x=1+2cosθ
y=
3
+2sinθ
(θ为参数),则圆C的普通方程为
(x-1)2+(y-
3
)2=4
(x-1)2+(y-
3
)2=4

(2)(不等式选讲选做题)设函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解集为
{x|x<-7或x>
5
3
}
{x|x<-7或x>
5
3
}

(3)(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)圆心在曲线y=
3
x
 (x>0)
上,且与直线3x+4y+3=0相切的面积最小的圆的方程为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中,正确的是(  )
A.平面内与两个定点F1、F2的距离的差等于常数(小于|F1F2|)的点的轨迹是双曲线
B.平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹是双曲线
C.方程
(x+1)2+(y-1)2
-
(x-1)2+(y-1)2
3
表示的曲线不是双曲线
D.双曲线
x2
9-k
+
y2
k-5
=1
有共同的焦点(焦距都等于4)

查看答案和解析>>

同步练习册答案