精英家教网 > 高中数学 > 题目详情
在数列{an}中,

a1=tanx,an+1=.

(1)写出a2,a3,a4;

(2)猜想{an}的通项公式,并加以证明.

解:(1)a2=a3=tan(2·+x),a4=tan(3·+x).

(2)猜想:an=tan[(n-1)·+x],下1面用数学归纳法证明之:

①当n=1时,显然成立;

②假设n=k时猜想正确,即ak=tan[(k-1)·+x].

当n=k+1时,ak+1=tan[+(k-1)·+x]=

tan[(k+1-1)·+x],

故猜想正确.

由①②知对任何n∈N*猜想都正确.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案