精英家教网 > 高中数学 > 题目详情
函数f(x)=-x4+2x2+3的最大值为
4
4
分析:利用换元法设t=x2,将函数转化为关于t的二次函数y═-t2+2t+3,然后利用二次函数的图象和性质求最大值.
解答:解:设t=x2,则t≥0,
则函数等价为y=-t2+2t+3,t≥0,
∵y=-t2+2t+3═-(t-1)2+4,
当t≥0时,∴当t=1时,y取得最大值4.
故答案为:4
点评:本题主要考查二次函数的性质的应用,利用换元法将4次函数转换为关于t的二次函数是解决本题的关键,注意换元后变量的等价性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(Ⅰ)当a=-
103
时,讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;
(Ⅲ)若对于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x4-2ax2,g(x)=1.
(1)求证:函数f(x)与g(x)的图象恒有公共点;
(2)当x∈(0,1]时,若函数f(x)图象上任一点处切线斜率均小于1,求实数a的取值范围;
(3)当x∈[0,1]时,关于x的不等式|f′(x)|>g(x)的解集为空集,求所有满足条件的实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)=x4-x2,那么 f′(i)=(  ) (i是虚数单位)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x4+ax3+bx2+cx+d.
(1)当a=d=-1,b=c=0时,若函数f(x)的图象与x轴所有交点的横坐标的和与积分别为m,n.
(i)求证:f(x)的图象与x轴恰有两个交点;
(ii)求证:m2=n-n3
(2)当a=c,d=1时,设函数f(x)有零点,求a2+b2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f′(3)是f(x)的导函数在x=3时的值,若函数f(x)=x4-f′(3)x,则f′(3)等于(  )

查看答案和解析>>

同步练习册答案