精英家教网 > 高中数学 > 题目详情
点M(3,-6)与⊙O:(x-1)2+(y+2)2=16-a2(其中a为常数)的位置关系是(  )
分析:利用点与圆的位置关系的判定方法即可得出.
解答:解:∵(3-1)2+(-6+2)2=20>16-a2
∴点M在⊙O外.
故选B.
点评:本题考查了点与圆的位置关系的判定方法、二次函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M的方程为:x2+y2-2x-2y-6=0,以坐标原点为圆心的圆N与圆M相内切.
(1)求圆N的方程;
(2)圆N与x轴交于E、F两点,圆内的动点D使得|DE|、|DO|、|DF|成等比数列,求
DE
DF
的取值范围;
(3)过点M作两条直线分别与圆N相交于A、B两点,且直线MA和直线MB的倾斜角互补,试判断直线MN和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1的各棱长均为1,棱BB1所在直线上的动点M满足
BM
BB1
,AM与侧面BB1C1C所成的角为θ,若λ∈[
2
2
2
],则θ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴于P,Q两点,且AP:PQ=8:5.
(1)求椭圆的离心率;
(2)已知直线l过点M(-3,0),倾斜角为
π
6
,圆C过A,Q,F三点,若直线l恰好与圆C相切,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:坐标系与参数方程
过点M(3,4),倾斜角为
π
6
的直线l与圆C:
x=2+5cosθ
y=1+5sinθ
(θ为参数)相交于A、B两点,试确定|MA|•|MB|的值.

查看答案和解析>>

同步练习册答案