精英家教网 > 高中数学 > 题目详情

已知菱形,沿对角线折起至处,,的中点.

(1)求证:;

(2)求证:.

证:(1)设交于点,连

是菱形  的中点

又M是的中点

平面

平面

平面

(2)

是PC的中点

平面

平面

平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A-BD-C为120°,则点A到△BCD所在平面的距离等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A-BD-C为120°,则点A到△BCD所在平面的距离等于(  )
A、
2
2
B、
2
4
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD,沿对角线BD将△ABD折起至△PBD处,P∉平面BCD,M是PC的中点.
(1)求证:PA∥平面BDM;
(2)求证:平面BDM⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的两条对角线交于点O,且AC=8,BD=4,E、F分别是BC、CD的中点,将△ABD沿BD折起,使平面ABD⊥平面BDC、
(1)求证EF⊥平面AOC;
(2)求AE与平面AOC所成角的正弦值;
(3)求点B到平面AEF的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•海淀区一模)已知菱形ABCD中,AB=4,∠BAD=60°(如图1所示),将菱形ABCD沿对角线BD翻折,使点C翻折到点C1的位置(如图2所示),点E,F,M分别是AB,DC1,BC1的中点.

(Ⅰ)证明:BD∥平面EMF;
(Ⅱ)证明:AC1⊥BD;
(Ⅲ)当EF⊥AB时,求线段AC1的长.

查看答案和解析>>

同步练习册答案