精英家教网 > 高中数学 > 题目详情
精英家教网如图,在正方体ABCD-A1B1C1D1中,二面角B-A1C1-B1的正切值为
 
分析:以D1为原点,D1A1为X轴,D1C1为Y轴,D1D为Z轴,建立D1-XYZ空间直角坐标系.求出平面角BA1C1与平面A1C1B1的法向量,代入空间向量夹角公式,即可求出答案.
解答:解:用向量法解如下:
以D1为原点,D1A1为X轴,D1C1为Y轴,D1D为Z轴,建立D1-XYZ空间直角坐标系.
设正方体的边长为1,易知平面A1C1B1的一个法向量为(0,0,1),
又可知A1(1,0,0),B(1,1,1),C1(0,1,0)
则向量
A1B
=(0,1,1),向量
C1B
=(1,0,1)
再设平面BA1C1的一个法向量为(X,Y,Z),
可解得可为(1,1,-1)
由两法向量可得二面角B-A1C1-B1的余弦值为
3
3

再由三角关系可得所求二面角B-A1C1-B1的正切值是
2

故答案为:
2
点评:本题考查的知识点是二面角的平面角及求法,其中建立空间坐标系,将二面角问题转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案