精英家教网 > 高中数学 > 题目详情

(16分)设为递增等差数列,Sn为其前n项和,满足-=S10,S11=33。
(1)求数列的通项公式及前n项和Sn;
(2)试求所有的正整数m,使为正整数。

解:(1)设等差数列的首项为,公差为,依题意有
;……………………………………3分
………………………………………………………………6分
可以解得
………………………………………………………………8分
………………………………………………10分
(2)……………………13分
要使为整数,只要为整数就可以了,
所以满足题意的正整数可以为2和3…………………………………16分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012年高考(浙江理))设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是   (  )

A.若d<0,则数列{S n}有最大项

B.若数列{S n}有最大项,则d<0

C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0

D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省绍兴市高一下学期期中考试文科数学试卷(解析版) 题型:选择题

设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是

A.若d<0,则数列{S n}有最大项

B.若数列{S n}有最大项,则d<0

C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0

D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(浙江卷解析版) 题型:选择题

设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是

A.若d<0,则数列{S n}有最大项

B.若数列{S n}有最大项,则d<0

C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0

D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列

 

查看答案和解析>>

科目:高中数学 来源: 题型:

S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是

A.若d<0,则数列{S n}有最大项

B.若数列{S n}有最大项,则d<0

C.若数列{S n}是递增数列,则对任意的nN*,均有S n>0

D.若对任意的nN*,均有S n>0,则数列{S n}是递增数列

【解析】选项C显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n}是递增数列,但是S n>0不成立.

【答案】C

查看答案和解析>>

同步练习册答案