精英家教网 > 高中数学 > 题目详情
20.已知{an}是各项均为正数的等比数列(公比q>1),bn=log2an,b1+b2+b3=3,b1b2b3=-3,则an=(  )
A.${a_n}={2^{2n-3}}$B.${a_n}={2^{5-2n}}$
C.${a_n}={2^{2n-5}}$D.${a_n}={2^{2n-3}}$或${a_n}={2^{5-2n}}$

分析 设数列{an}的首项为a1,公比为q,则log2a1+log2a2+log2a3=3,从而a1a2a3=8,进而a2=2.由b1b2b3=-3,得log2a1•log2a2•log2a3=-3,从而log2a1•log2a3=-3,进而(log2a2-log2q)(log2a2+log2q)=-3,解得q=4,${a}_{1}=\frac{{a}_{2}}{q}=\frac{1}{2}$,由此能求出结果.

解答 解:设数列{an}的首项为a1,公比为q,
∵b1+b2+b3=3,∴log2a1+log2a2+log2a3=3,
∴log2(a1a2a3)=3,∴a1a2a3=8,∴a2=2.
∵b1b2b3=-3,∴log2a1•log2a2•log2a3=-3,
∴log2a1•log2a3=-3,
∴${log_2}\frac{a_2}{q}•{log_2}({a_2}•q)=-3$,
即(log2a2-log2q)(log2a2+log2q)=-3,
即(1-log2q)(1+log2q)=-3,解得log2q=±2,
又∵q>1,∴log2q=2,解得q=4,${a}_{1}=\frac{{a}_{2}}{q}=\frac{1}{2}$,
∴${a}_{n}=\frac{1}{2}×{4}^{n-1}={2}^{2n-3}$.
故选:A.

点评 本题考查数列的通项公式的求法,考查等比数列、对数性质及运算法则等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设f(x)是定义在R上的增函数,且对任意x,都有f(-x)+f(x)=0恒成立,如果实数m,n满足不等式f(m2-6m+21)+f(n2-8n)<0,则m2+n2的取值范围是(  )
A.(9,25)B.(3,7)C.(9,49)D.(13,49)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.使命题p:?x0∈R+,x0ln x0+x02-ax0+2<0成立为假命题的一个充分不必要条件为(  )
A.a∈(0,3)B.a∈(-∞,3]C.a∈(3,+∞)D.a∈[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,若圆C的极坐标方程为ρ=4cosθ,则圆心C的直角坐标为(2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左右焦点分别为F1,F2,过右焦点F2的直线交双曲线右支于A、B两点,连结AF1、BF1,若|AB|=|BF1|且$∠AB{F_1}={90^o}$,则双曲线的离心率为(  )
A.$5-2\sqrt{2}$B.$\sqrt{5-2\sqrt{2}}$C.$6-3\sqrt{2}$D.$\sqrt{6-3\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=log${\;}_{\frac{1}{2}}$x+x-a,则“a∈(1,5)”是“函数f(x)在(2,8)上存在零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.由数字0,1,2,3组成没有重复数字的四位数有18个(用数字作答)其中数字0,1相邻的四位数有10个(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一盒中有12个质地均匀的乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为$\frac{27}{220}$(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知边长为$\sqrt{3}$的正三角形ABC三个顶点都在球O的表面上,且球心O到平面ABC的距离为该球半径的一半,则球O的表面积为$\frac{16π}{3}$.

查看答案和解析>>

同步练习册答案