精英家教网 > 高中数学 > 题目详情

已知甲、乙、丙等6人 .

(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?

(2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?

(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.

 

【答案】

(1)63

(2)504

(3)

【解析】

试题分析:解:(1)

故共有63种不同的去法  4分

(2)

故共有504种不同的安排方法 8分

(3)

故每项活动至少有1人参加的概率为… 13分

考点:组合数公式以及排列数,概率

点评:主要是考查了组合和排列在实际生活中的运用,属于基础题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知甲、乙、丙等6人.
(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?
(2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”--目测、初检、复检、文考、政审等.若某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员.根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.
(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;
(2)设通过最后三关后,能被录取的人数为X,求随机变量X的期望E(X).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知甲、乙、丙等6人.
(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?
(2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市万里国际学校高二(下)期末数学试卷(理科)(解析版) 题型:解答题

已知甲、乙、丙等6人.
(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?
(2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.

查看答案和解析>>

同步练习册答案