精英家教网 > 高中数学 > 题目详情

若{x|2<x<3}为x2+ax+b<0的解集,则bx2+ax+1>0的解集为

[  ]
A.

{x|x<2或x>3}

B.

{x|2<x<3}

C.

{x|<x<}

D.

{x|x<或x>}

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f1(x)=3|x-p1|f2(x)=2•3|x-p2|(p1,p2为实数),函数f(x)定义为:对于每个给定的x,f(x)=
f1(x) ,f1(x)≤f2(x)
f2(x) ,f1(x)>f2(x)

(1)讨论函数f1(x)的奇偶性;
(2)解不等式:f2(x)≥6;
(3)若f(x)=f1(x)对任意实数x都成立,求p1,p2满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式kx2-2x+6k<0,(k>0)
(1)若不等式的解集为{x|2<x<3},求实数k的值;
(2)若不等式对一切2<x<3都成立,求实数k的取值范围;
(3)若不等式的解集为集合{x|2<x<3}的子集,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•上海一模)在统计学中,我们学习过方差的概念,其计算公式为
σ
2
 
=
1
N
[(x1)2+(x2)2+…+(xn)2]
,并且知道,其中μ=
1
N
(x1+x2+…+xn)
为x1、x2、…、xn的平均值.
类似地,现定义“绝对差”的概念如下:设有n个实数x1、x2、…、xn,称函数g(x)=|x-x1|+|x-x2|+…+|x-xn|为此n个实数的绝对差.
(1)设有函数g(x)=|x+1|+|x-1|+|x-2|,试问当x为何值时,函数g(x)取到最小值,并求最小值;
(2)设有函数g(x)=|x-x1|+|x-x2|+…+|x-x2|,(x∈R,x1<x2<…<xn∈R),
试问:当x为何值时,函数g(x)取到最小值,并求最小值;
(3)若对各项绝对值前的系数进行变化,试求函数f(x)=3|x+3|+2|x-1|-4|x-5|(x∈R)的最值;
(4)受(3)的启发,试对(2)作一个推广,给出“加权绝对差”的定义,并讨论该函数的最值(写出结果即可).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)若集合M={x|-2<x<3},N={x|2x+1≥1},则M∩N=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知关于x的不等式kx2-2x+6k<0,(k>0)
(1)若不等式的解集为{x|2<x<3},求实数k的值;
(2)若不等式对一切2<x<3都成立,求实数k的取值范围;
(3)若不等式的解集为集合{x|2<x<3}的子集,求实数k的取值范围.

查看答案和解析>>

同步练习册答案