精英家教网 > 高中数学 > 题目详情
抛物线y2=4x的焦点为F,准线l与x轴相交于点E,过F且倾斜角等于60°的直线与抛物线在x轴上方的部分相交于点A,AB⊥l,垂足为B,则四边形ABEF的面积等于(  )
A.3
3
B.4
3
C.6
3
D.8
3
由抛物线的定义可得AF=AB,∵AF的倾斜角等于60°,
∵AB⊥l,∴∠FAB=60°,故△ABF为等边三角形.
又焦点F(1,0),AF的方程为 y-0=
3
(x-1),
设A(m,
3
m-
3
),m>1,由AF=AB,得 
(m-1)2+(
3
m-
3
)2
=m+1,
∴m=3,故等边三角形△ABF的边长AB=m+1=4,
△ABF为等边三角形,
∴四边形ABEF的面积是
1
2
(EF+AB)BE=
1
2
(2+4)×4sin60°=6
3

故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F,准线为l,则过点F和M(4,4)且与准线l相切的圆的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F.
(1)若直线l过点M(4,0),且F到直线l的距离为2,求直线l的方程;
(2)设A,B为抛物线上两点,且AB不与X轴垂直,若线段AB中点的横坐标为2.求证:线段AB的垂直平分线恰过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点,且AF=2BF,则A点的坐标为
(5,2
2
)或(5,-2
2
(5,2
2
)或(5,-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)已知抛物线y2=4x的焦点为F,过F的直线与该抛物线相交于A(x1,y1),B(x2,y2)两点,则
y
2
1
+
y
2
2
的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)在抛物线
y
2
 
=4x
的焦点为圆心,并与抛物线的准线相切的圆的方程是
(x-1)2+y2=4
(x-1)2+y2=4

查看答案和解析>>

同步练习册答案