精英家教网 > 高中数学 > 题目详情
函数f(x)=x+
2
x
的单调递减区间是(  )
A、(0, 
2
]
B、[-
2
, 0)
C、(0, 
2
]∪
[-
2
, 0)
D、(0, 
2
]
[-
2
, 0)
分析:由函数的单调性定义,本题作差 f(x1)-f(x2),变形得到(x1-x2)•
x1x2-2
x1x2
,分两种情况进行讨论可以得到函数的单调区间,要注意两个单调减区间(0, 
2
]
[-
2
, 0)
,不能写成(0, 
2
]∪
[-
2
, 0)
的形式
解答:解:设0<x1<x2,则
f(x1)-f(x2)=(x1+
2
x1
)-(x2+
2
x2

=(x1-x2)+(
2
x1
-
2
x2

=(x1-x2)•
x1x2-2
x1x2

因为0<x1<x2,所以x1-x2<0,x1•x2>0,
所以当0<x1<x2
2
时,x1•x2-2<0,所以
x1x2-2
x1x2
<0
所以:f(x1)-f(x2)>0,即f(x1)>f(x2
所以f(x)在(0,
2
]上是减函数.
同理可证:f(x)在[-
2
,0)上也是减函数.
故选:D
点评:本题考查函数的单调性以及单调区间的求法,利用定义解答求单调区间的时候,要注意x1,x2的任意性,本题中求解区间
需要分0<x1<x2
2
和-
2
≤x1<x2<0进行讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,则下列命题中:?
①若f(x-2)是偶函数,则函数f(x)的图象关于直线x=2对称;?②若f(x+2)=-f(x-2),则函数f(x)的图象关于原点对称;?③函数y=f(2+x)与函数y=f(2-x)的图象关于直线x=2对称;?④函数y=f(x-2)与函数y=f(2-x)的图象关于直线x=2对称.?
其中正确的命题序号是
.?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数f(x)的定义域为R,则下列命题中:?
①若f(x-2)是偶函数,则函数f(x)的图象关于直线x=2对称;?②若f(x+2)=-f(x-2),则函数f(x)的图象关于原点对称;?③函数y=f(2+x)与函数y=f(2-x)的图象关于直线x=2对称;?④函数y=f(x-2)与函数y=f(2-x)的图象关于直线x=2对称.?
其中正确的命题序号是________.?

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:《2.2 综合法与分析法》2013年同步练习(解析版) 题型:选择题

下面对命题“函数f(x)=x+是奇函数”的证明不是综合法的是( )
A.?x∈R且x≠0有f(-x)=(-x)+=-(x+)=-f(x),∴f(x)是奇函数
B.?x∈R且x≠0有f(x)+f(-x)=x++(-x)+(-)=0,∴f(x)=-f(-x),∴f(x)是奇函数
C.?x∈R且x≠0,∵f(x)≠0,∴==-1,∴f(-x)=-f(x),∴f(x)是奇函数
D.取x=-1,f(-1)=-1+=-2,又f(1)=1+=2

查看答案和解析>>

同步练习册答案