精英家教网 > 高中数学 > 题目详情

已知函数数学公式,且f(2)=a,则f(-2)=


  1. A.
    a-4
  2. B.
    4-a
  3. C.
    8-a
  4. D.
    a-8
C
分析:先设g(x)=lg(x+),得到其为奇函数,求出g(-2)=-g(2),再结合f(-2)=4+g(-2)=4-g(2)=4-[f(2)-4]进而求出结论.
解答:设g(x)=lg(x+),
∴g(-x)=lg(-x+)=-lg(x+);
故g(-2)=-g(2).

∴f(x)=x2+g(x),
则f(2)=4+g(2)
∴f(-2)=4+g(-2)=4-g(2)=4-[f(2)-4]
=8-f(2)=8-a.
故选C.
点评:本题主要考察函数的值以及函数奇偶性的应用.解决本题的关键在于先设g(x)=lg(x+),得到其为奇函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为数学公式.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省岳阳一中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知函数,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:江苏省泰州市中学高三数学一轮复习过关测试卷:函数(1)(解析版) 题型:解答题

已知函数,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年山东省烟台市莱州一中高考数学一模试卷(文科)(解析版) 题型:解答题

已知函数,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年《龙门亮剑》高三数学(理科)一轮复习:第2章第6节(人教AB通用)(解析版) 题型:解答题

已知函数,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案