科目:高中数学 来源:福建省师大附中2011-2012学年高二下学期期中考试数学文科试题 题型:044
设函数f(x)=ax2+lnx.
(Ⅰ)当a=-1时,求函数y=f(x)的单调区间;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线
的下方,求a的取值范围;
(Ⅲ)记
为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得
(x1)+
(x2)+
(x3)+…+
(xk)≥2012成立?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源:南通高考密卷·数学(理) 题型:044
已知向量p=(a,x+1),q=(x,a),m=(1,y),且(p-q)∥m,y与x的函数关系式为y=f(x).
(1)求f(x);
(2)判断并证明函数y=f(x)当x>a时的单调性;
(3)我们利用函数y=f(x)构造一个数列{xn),方法如下:对于f(x)定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),….在上述构造数列的过程中,如果xi(i=1,2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.如果取f(x)定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值.
查看答案和解析>>
科目:高中数学 来源:江苏省东海高级中学2010届高三数学第一学期期中数学试题苏教版 苏教版 题型:044
设定义在[x1,x2]上的函数y=f(x)的图象为C,C的端点为点A、B,M是C上的任意一点,向量
=(x1,y1),
=(x2,y2),
=(x,y),若x=λx1+(1-λ)x2,记向量
=λ
+(1-λ)
.现在定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指
≤k恒成立,其中k是一个人为确定的正数.
(1)证明:0<λ≤1;
(2)请你给出一个标准k的范围,使得[0,1]上的函数y=x2与y=x3中有且只有一个可在标准k下线性近似.
查看答案和解析>>
科目:高中数学 来源:江苏省某重点中学2012届高三上学期11月练习数学试题 题型:044
对于三次函数f(x)=ax3+bx2+cx+d(a≠0).
定义:(1)设
(x)是函数y=f(x)的导数y=
(x)的导数,若方程
(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;
定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
己知f(x)=x3-3x2+2x+2,请回答下列问题:
(1)求函数f(x)的“拐点”A的坐标
(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)
(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com