精英家教网 > 高中数学 > 题目详情

证明函数y=x3(x∈R)是增函数.

练习册系列答案
相关习题

科目:高中数学 来源:福建省师大附中2011-2012学年高二下学期期中考试数学文科试题 题型:044

设函数f(x)=ax2lnx.

(Ⅰ)当a=-1时,求函数y=f(x)的单调区间;

(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线的下方,求a的取值范围;

(Ⅲ)记为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得(x1)+(x2)+(x3)+…+(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源:南通高考密卷·数学(理) 题型:044

已知向量p=(a,x+1),q=(x,a),m=(1,y),且(p-q)∥m,y与x的函数关系式为y=f(x).

(1)求f(x);

(2)判断并证明函数y=f(x)当x>a时的单调性;

(3)我们利用函数y=f(x)构造一个数列{xn),方法如下:对于f(x)定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),….在上述构造数列的过程中,如果xi(i=1,2,3,4,…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.如果取f(x)定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的值.

查看答案和解析>>

科目:高中数学 来源:江苏省东海高级中学2010届高三数学第一学期期中数学试题苏教版 苏教版 题型:044

设定义在[x1,x2]上的函数y=f(x)的图象为C,C的端点为点A、B,M是C上的任意一点,向量=(x1,y1),=(x2,y2),=(x,y),若x=λx1+(1-λ)x2,记向量=λ+(1-λ).现在定义“函数y=f(x)在[x1,x2]上可在标准k下线性近似”是指≤k恒成立,其中k是一个人为确定的正数.

(1)证明:0<λ≤1;

(2)请你给出一个标准k的范围,使得[0,1]上的函数y=x2与y=x3中有且只有一个可在标准k下线性近似.

查看答案和解析>>

科目:高中数学 来源:江苏省某重点中学2012届高三上学期11月练习数学试题 题型:044

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).

定义:(1)设(x)是函数y=f(x)的导数y=(x)的导数,若方程(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”;

定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.

己知f(x)=x3-3x2+2x+2,请回答下列问题:

(1)求函数f(x)的“拐点”A的坐标

(2)检验函数f(x)的图象是否关于“拐点”A对称,对于任意的三次函数写出一个有关“拐点”的结论(不必证明)

(3)写出一个三次函数G(x),使得它的“拐点”是(-1,3)(不要过程)

查看答案和解析>>

同步练习册答案