精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga
1+x1-x
(a>0,且a≠1)
(Ⅰ)求函数f(x)的定义域;
(Ⅱ)判断函数f(x)的奇偶性、并证明;
(Ⅲ)求使不等式f(x)>0成立的x的取值范围.
分析:(Ⅰ)由函数f(x)的解析式可得
1+x
1-x
>0,即 (1+x)(1-x)>0,由此解得x的范围,即可得到函数f(x)的定义域.
(Ⅱ)由于函数f(x)的定义域关于原点对称,且f(-x)=-f(x),根据函数的奇偶性的定义得出结论.
(Ⅲ)由不等式f(x)>0可得,当a>1时,由
1+x
1-x
>1,求得不等式的解集.当1>a>0时,0<
1+x
1-x
<1,即
1+x
1-x
>0
1+x
1-x
<1
,解此不等式组求得不等式的解集,
综合可得结论.
解答:解:(Ⅰ)∵函数f(x)=loga
1+x
1-x
(a>0,且a≠1),可得
1+x
1-x
>0,即 (1+x)(1-x)>0,解得-1<x<1,
故函数f(x)的定义域为(-1,1).
(Ⅱ)由于函数f(x)的定义域为(-1,1),关于原点对称,且f(-x)=loga
1-x
1+x
=-loga
1+x
1-x
=-f(x),
故函数f(x)为奇函数.
(Ⅲ)由不等式f(x)>0可得,当a>1时,
1+x
1-x
>1,即 
2x
x-1
 <0
,解得0<x<1.
当1>a>0时,0<
1+x
1-x
<1,即  
1+x
1-x
>0
1+x
1-x
<1
,即
-1<x<1
x>1 ,或x<0
,解得-1<x<0.
综上可得,当a>1时,不等式的解集为{x|0<x<1}; 当1>a>0时,不等式的解集为{x|-1<x<0}.
点评:本题主要考查对数函数的图象和性质应用,分式不等式的解法,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案