科目:高中数学 来源: 题型:
| f(x2)-f(x1) |
| x2-x1 |
| f(b)-f(a) |
| b-a |
| b-a |
| b |
| b |
| a |
| b-a |
| a |
查看答案和解析>>
科目:高中数学 来源:江苏省阜宁县中学2011-2012学年高二下学期期中调研考试数学试题 题型:022
下面使用类比推理正确的序号是________.
(1)由“(a+b)c=ac+bc”类比得到“(
·
)
=![]()
·![]()
”
(2)由“在f(x)=ax2+bx(a≠0)中,若f(x1)=f(x2),则有f(x1+x2)=0类比得到”在等差数列{an}中,Sn为前n项的和,若Sp=Sq,则有Sp+q=0
(3)由“平面上的平行四边形的对边相等”类比得到“空间中的平行六面体的对面是全等的平行四边形”
(4)由“过圆x2+y2=r2上的点(x0,y0)的切线方程为x0x+y0y=r2”类比得到“过圆(x-a)2+(y-b)2=r2上的点(x0,y0)的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2”
查看答案和解析>>
科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(湖南卷解析版) 题型:解答题
已知函数f(x)=ex-ax,其中a>0.
(1)若对一切x∈R,f(x)
1恒成立,求a的取值集合;
(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使
恒成立.
【解析】解:
令
.
当
时
单调递减;当
时
单调递增,故当
时,
取最小值![]()
于是对一切
恒成立,当且仅当
. ①
令
则![]()
当
时,
单调递增;当
时,
单调递减.
故当
时,
取最大值
.因此,当且仅当
时,①式成立.
综上所述,
的取值集合为
.
(Ⅱ)由题意知,
令
则
![]()
![]()
令
,则
.当
时,
单调递减;当
时,
单调递增.故当
,
即![]()
从而
,
又![]()
![]()
所以![]()
因为函数
在区间
上的图像是连续不断的一条曲线,所以存在
使
即
成立.
【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出
取最小值
对一切x∈R,f(x)
1恒成立转化为
从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=mx3+nx2(m、n∈R ,m≠0)的图像在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1, 关于x的方程:
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
(可不用证明函数的连续性和可导性)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com