精英家教网 > 高中数学 > 题目详情
关于曲线x2=siny,下列说法正确的是(  )
分析:根据把曲线方程中的x换成-x,方程不变,可得此曲线关于y轴对称.
解答:解:对于曲线x2=siny,把x换成-x,方程不变,故此曲线关于y轴对称,
故选B.
点评:本题主要考查奇偶函数的对称性,注意:把曲线方程中的x换成-x,方程不变,则此曲线关于y轴对称,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个命题,其中为真命题的是
①②③
①②③
;(写出所有的真命题序号)
①方程2x2+4x+y=0表示的曲线一定经过坐标原点,
②不等式x2+4x+5≤0的解集为空集,
③方程xy=0表示的曲线关于直线y=x对称,
④若sinα=sinβ,则α=β.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•福建模拟)给出以下四个结论:
(1)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2
(2)曲线y=1+
4-x2
(|x|≤2)
与直线y=k(x-2)+4有两个交点时,实数k的取值范围是(
5
12
3
4
]

(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,则3b-2a>1;
(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
π
12
,其中正确的结论是:
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若点A(a,b)(其中a≠b)在矩阵M=
0-1
10
对应变换的作用下得到的点为B(-b,a).
(Ⅰ)求矩阵M的逆矩阵;
(Ⅱ)求曲线C:x2+y2=1在矩阵N=
0
1
2
10
所对应变换的作用下得到的新的曲线C′的方程.
(2)选修4-4:坐标系与参数方程
(Ⅰ)以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为θ=
π
4
(ρ∈R)
,它与曲线
x=2+
5
cosθ
y=1+
5
sinθ
为参数)相交于两点A和B,求|AB|;
(Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:ρcos(θ-
π
4
)=
2
,曲线C2的参数方程为:
x=1+cosθ
y=3+sinθ
(θ为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程.
(3)选修4-5:不等式选讲
(Ⅰ)已知函数f(x)=|x+3|,g(x)=m-2|x-11|,若2f(x)≥g(x+4)恒成立,求实数m的取值范围.
(Ⅱ)已知实数x、y、z满足2x2+3y2+6z2=a(a>0),且x+y+z的最大值是1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题P“曲线sinα•x2+cosα•y2=1为焦点在y轴上的椭圆”,写出让命题P成立的一个充分条件
 
(请填写关于α的值或区间)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年宁夏石嘴山市光明中学高二(上)期末数学试卷(理科)(解析版) 题型:填空题

下列四个命题,其中为真命题的是    ;(写出所有的真命题序号)
①方程2x2+4x+y=0表示的曲线一定经过坐标原点,
②不等式x2+4x+5≤0的解集为空集,
③方程xy=0表示的曲线关于直线y=x对称,
④若sinα=sinβ,则α=β.

查看答案和解析>>

同步练习册答案