精英家教网 > 高中数学 > 题目详情
已知f(x)=x2-x+c定义在区间[0,1]上,x1、x2∈[0,1],且x1≠x2,求证:

(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<|x1-x2|;

(3)|f(x1)-f(x2)|< ;

(4)|f(x1)-f(x2)|≤.

证明:(1)f(0)=c,f(1)=c,

∴f(0)=f(1).

(2)|f(x2)-f(x1)|=|x2-x1||x2+x1-1|.

∵0≤x1≤1,∴0≤x2≤1,0<x1+x2<2(x1≠x2).

∴-1<x1+x2-1<1.

∴|f(x2)-f(x1)|<|x2-x1|.

(3)不妨设x2>x1,由(2)知|f(x2)-f(x1)|<x2-x1.①

而由f(0)=f(1),从而|f(x2)-f(x1)|=|f(x2)-f(1)+f(0)-f(x1)|≤|f(x2)-f(1)|+|f(0)-f(x1)|<|1-x2|+|x1|<1-x2+x1.②

①+②得2|f(x2)-f(x1)|<1,

即|f(x2)-f(x1)|<.

(4)|f(x2)-f(x1)|≤fmax-fmin=f(0)-f()=.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2-(a+
1
a
)x+1

(Ⅰ)当a=
1
2
时,解不等式f(x)≤0;
(Ⅱ)若a>0,解关于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2(x>0)
e(x=0)
0(x<0)
,则f{f[f(-2)]}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x2,x>0
f(x+1),x≤0
则f(2)+f(-1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)对定义域中任意x,均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称;
(1)已知f(x)=
x2-mx+1x
的图象关于点(0,1)对称,求实数m的值;
(2)已知函数g(x)在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=-2x-n(x-1),求函数g(x)在x∈(-∞,0)上的解析式;
(3)在(1)(2)的条件下,若对实数x<0及t>0,恒有g(x)+tf(t)>0,求正实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2,g(x)=(
1
2
)x-m
,若对任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是
m
1
4
m
1
4

查看答案和解析>>

同步练习册答案