精英家教网 > 高中数学 > 题目详情

已知|数学公式|=2c,|数学公式|=2a(a>c),2数学公式=数学公式,2数学公式=数学公式数学公式数学公式=0(G为动点) (a>c).
(1)建立适当的平面直角坐标系,求出点P的轨迹方程;
(2)若点P的轨迹上存在两个不同的点A、B,且线段AB的中垂线与EF(或EF的延长线)有唯一的交点C,证明:|数学公式|<数学公式

解:(1)|PE|+|PF|=|PG|+|PF|=|FG|=2a(>|EF|),∴点P的轨迹为椭圆
∴轨迹方程为
(2)设A(x1,y1),B(x2,y2).A,B的中点M(x0,y0),C(t,0).
当kCM不存在时,显然成立.
当kCM存在时,kCM=.由“点差法”得:
∵kAB•kCM=-1.
分析:(1)根据向量式转化成:|PE|+|PF|=|PG|+|PF|=|FG|=2a(>|EF|),结合椭圆的定义得点P的轨迹为椭圆,最后写出轨迹方程即可;
(2)先设A(x1,y1),B(x2,y2).A,B的中点M(x0,y0),C(t,0).分类讨论:①当kCM不存在时,显然成立.
②当kCM存在时,利用“点差法”得直线AB的斜率,再结合题中条件:“kAB•kCM=-1.”即可证得结论.
点评:本小题主要考查椭圆的应用、轨迹方程、不等式的解法等基础知识,考查运算求解能力,解答的关键是利用设而不求的方法:“点差法”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数a,b∈R+,a+b=1,M=2a+2b,则M的整数部分是(  )

查看答案和解析>>

科目:高中数学 来源:高中新教材同步教学·高一数学 题型:013

△ABC中,已知=2c(),则∠C的度数是

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:013

△ABC中,已知=2c(),则∠C的度数是

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知= 2c,= 2a(a>c),2=,2=,·=0(G为动点) (a>c)。

(1)建立适当的平面直角坐标系,求出点P的轨迹方程;

(2)若点P的轨迹上存在两个不同的点A、B,且线段AB的中垂线与EF(或EF的延长线)有唯一的交点C,证明:︱︱<

   

查看答案和解析>>

同步练习册答案