精英家教网 > 高中数学 > 题目详情

如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,求其边长x.

解:根据题意得:AD=BC=,上边三角形的面积为:(5-x),右侧三角形的面积为:x(12-),
所以y=30-(5-x) -x(12-),
整理得y=-x2+12x,
=-[x2-5x+( )2-],
=-(x-2+15,

∴长方形面积有最大值,此时边长x应为 m.
故要使长方形的面积最大,其边长m.
分析:本题考查二次函数最小(大)值的求法.欲求使长方形的面积最大时的边长x,先利用:长方形的面积=大三角形的面积-两个小三角形的面积表示出函数y,再利用二次函数的性质求出最大值及相应的x的值即可.
点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•连云港三模)如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,求其边长x.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)如图所示,在平面直角坐标系xOy上放置一个边长为1的正方形PABC,此正方形PABC沿x轴滚动(向左或向右均可),滚动开始时,点P位于原点处,设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),x∈R,该函数相邻两个零点之间的距离为m.
(1)写出m的值并求出当0≤x≤m时,点P运动路径的长度l;
(2)写出函数f(x),x∈[4k-2,4k+2],k∈Z的表达式;研究该函数的性质并填写下面表格:
函数性质 结  论
奇偶性
偶函数
偶函数
单调性 递增区间
[4k,4k+2],k∈z
[4k,4k+2],k∈z
递减区间
[4k-2,4k],k∈z
[4k-2,4k],k∈z
零点
x=4k,k∈z
x=4k,k∈z
(3)试讨论方程f(x)=a|x|在区间[-8,8]上根的个数及相应实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省镇江市高三第二次调研数学试卷(解析版) 题型:解答题

如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,求其边长x.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省连云港市高考数学三模试卷(解析版) 题型:解答题

如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,求其边长x.

查看答案和解析>>

同步练习册答案