精英家教网 > 高中数学 > 题目详情
已知椭圆
y2
a2
+
x2
b2
=1
(a>b>0)的离心率为
2
2
.斜率为k(k≠0)的直线?过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m),且当k=1时,下焦点到直线?的距离为
2

(1)求椭圆的方程;
(2)求m的取值范围.
(1)依题意可得,下焦点坐标为(0,-c),上焦点坐标为(0,c),直线方程为y=x+c
∵下焦点到直线?的距离为
2
,∴
2
=
|2c|
2
,∴c=1
c
a
=
2
2
,c=1
,可得a=
2

∴b=1
所以椭圆方程为
y2
2
+x2=1

(2)设直线的方程为y=kx+1
y=kx+1
y2
2
+x2=1
可得(k2+2)x2+2kx-1=0
设P(x1,y1),Q(x2,y2
x1+x2=
-2k
k2+2
x1x2=
-1
k2+2

可得y1+y2=k(x1+x2)+2=
4
k2+2

设线段PQ中点为N,则点N的坐标为(
-k
k2+2
2
k2+2
)

由题意有kMN•k=-1
可得
m-
2
k2+2
k
k2+2
•k=-1
,可得m=
1
k2+2

∵k≠0,∴0<m<
1
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(
3
c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(
3
c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1 (a>b>0)
的离心率e满足3, 
1
e
, 
4
9
成等比数列,且椭圆上的点到焦点的最短距离为2-
3
.过点(2,0)作直线l交椭圆于点A,B.
(1)若AB的中点C在y=4x(x≠0)上,求直线l的方程;
(2)设椭圆中心为,问是否存在直线l,使得的面积满足2S△AOB=|OA|•|OB|?若存在,求出直线AB的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)的上下焦点分别为F1,F1,短轴两个端点为P,P1,且四边形F1PF2P1是边长为2的正方形.
(1)求椭圆方程;
(2)设△ABC,AC=2
3
,B为椭圆
y2
a2
+
x2
b2
=1(a>b>0)在x轴上方的顶点,当AC在直线y=-1上运动时,求△ABC外接圆的圆心Q的轨迹E的方程;
(3)过点F(0,
3
2
)作互相垂直的直线l1l2,分别交轨迹E于M,N和R,Q.求四边形MRNQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:南通模拟 题型:解答题

平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(
3
c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆
y2
a2
+
x2
b2
=1(a>b>0)
(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.
①求椭圆离心率的取值范围;
②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.

查看答案和解析>>

同步练习册答案