精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数f(x)满足:当x>0时,f(x)=ax+logax(a>1),则方程f(x)=0的实根的个数为(  )
A、1B、2C、3D、5
分析:在同一坐标系下分别画出函数 y=-logax 和y=log
1
a
x
的图象,由图象求出方程根的个数;再根据奇函数图象的对称性以及f(0)=0,可求出方程的根的个数.
解答:精英家教网解:当x>0时,f(x)=ax+logax(a>1),令f(x)=0可得 ax=-logax=log
1
a
x

在同一坐标系下分别画出函数 y=-logax 和y=log
1
a
x
的图象,如图所示:
可知两个图象只有一个交点,即方程f(x)=0在(0,+∞)上只有一个实根,
∵f(x)是定义在R上的奇函数,
∴当x<0时,方程f(x)=0也有一个实根,
又∵f(0)=0,
∴方程f(x)=0的实根的个数为3.
故选:C.
点评:本题主要考查奇函数图象的性质应用,即根据题意画出一部分函数的图象,由交点的个数求出对应方程根的个数,利用图象的对称性和“f(0)=0”求出方程根的个数,注意解答本题时容易漏f(0)=0,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案