6£®Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÁ½¶¥µãΪA1£¬A2£¬ÐéÖáÁ½¶ËµãΪB1£¬B2£¬Á½½¹µãΪF1£¬F2£¬ÈôÒÔA1A2Ϊֱ¾¶µÄÔ²ÄÚÇÐÓÚÁâÐÎF1B1F2B2£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
A£®$\sqrt{5}$-1B£®$\frac{3+\sqrt{5}}{2}$C£®$\frac{\sqrt{5}+1}{2}$D£®$\sqrt{3}$+1

·ÖÎö ÓÉÌâÒâ¿ÉµÃ¶¥µãºÍÐéÖá¶Ëµã×ø±ê¼°½¹µã×ø±ê£¬ÇóµÃÁâÐεı߳¤£¬ÔËÓõȻý·¨¿ÉµÃ$\frac{1}{2}$•2b•2c=$\frac{1}{2}$a•4$\sqrt{{b}^{2}+{c}^{2}}$£¬ÔÙÓÉa£¬b£¬cµÄ¹ØÏµºÍÀëÐÄÂʹ«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£®

½â´ð ½â£ºÓÉÌâÒâ¿ÉµÃA1£¨-a£¬0£©£¬A2£¨a£¬0£©£¬B1£¨0£¬b£©£¬B2£¨0£¬-b£©£¬
F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬
ÇÒa2+b2=c2£¬ÁâÐÎF1B1F2B2µÄ±ß³¤Îª$\sqrt{{b}^{2}+{c}^{2}}$£¬
ÓÉÒÔA1A2Ϊֱ¾¶µÄÔ²ÄÚÇÐÓÚÁâÐÎF1B1F2B2£¬Çеã·Ö±ðΪA£¬B£¬C£¬D£®
ÓÉÃæ»ýÏàµÈ£¬¿ÉµÃ$\frac{1}{2}$•2b•2c=$\frac{1}{2}$a•4$\sqrt{{b}^{2}+{c}^{2}}$£¬
¼´Îªb2c2=a2£¨b2+c2£©£¬
¼´ÓÐc4+a4-3a2c2=0£¬
ÓÉe=$\frac{c}{a}$£¬¿ÉµÃe4-3e2+1=0£¬
½âµÃe2=$\frac{3¡À\sqrt{5}}{2}$£¬
¿ÉµÃe=$\frac{1+\sqrt{5}}{2}$£¬»òe=$\frac{\sqrt{5}-1}{2}$£¨ÉáÈ¥£©£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏßµÄÀëÐÄÂʵÄÇ󷨣¬×¢ÒâÔËÓÃÔ²ÄÚÇеȻý·¨£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èç¼×ͼËùʾ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=4£¬AD=2£¬EÊÇCDµÄÖе㣬½«¡÷ADEÑØAEÕÛÆðµ½¡÷D1AEλÖã¬Ê¹Æ½ÃæD1AE¡ÍÆ½ÃæABCE£¬µÃµ½ÒÒͼËùʾµÄËÄÀâ×¶D1-ABCE£®
£¨¢ñ£©ÇóÖ¤£ºBE¡ÍÆ½ÃæD1AE£»
£¨¢ò£©Çó¶þÃæ½ÇA-D1E-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖª¡÷ABCÖУ¬¡ÏA=120¡ã£¬ÇÒAB=AC=2£¬ÄÇôBC=2$\sqrt{3}$£¬$\overrightarrow{BC}•\overrightarrow{CA}$=-6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªº¯Êý$f£¨x£©=ln£¨kx£©+\frac{1}{x}-k£¨k£¾0£©$£®
£¨¢ñ£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©¶ÔÈÎÒâ$x¡Ê[\frac{1}{k}£¬\frac{2}{k}]$£¬¶¼ÓÐxln£¨kx£©-kx+1¡Ümx£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AD¡ÎBC£¬¡ÏADC=90¡ã£¬AD=2£¬BC=CD=1£¬PÊÇABµÄÖе㣬Ôò$\overrightarrow{DP}•\overrightarrow{AB}$=-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬ÒÑÖªËÄÀâ×¶P-ABCDÊDZ߳¤Îª1µÄÕý·½ÐΣ¬PB=PD=$\sqrt{5}$£¬PC=2£¬EÊDzàÀâPCÉϵ͝µã£®
£¨¢ñ£©ÇóÖ¤£º²»ÂÛµãEÔÚºÎλÖ㬶¼ÓÐBD¡ÍAE£»
£¨¢ò£©ÈôPA¡ÎÆ½ÃæBDE£¬ÇóÖ±ÏßAEÓëÆ½ÃæBDEËù³É½ÇµÄÕýÏÒÖµ£®
£¨¢ó£©ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Çó¶þÃæ½ÇD-AE-BµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑ֪˫ÇúÏßC£º$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{5}}{2}$£¬µãPÊÇÅ×ÎïÏßy2=4xÉϵÄÒ»¸ö¶¯µã£¬Pµ½Ë«ÇúÏßCµÄÉϽ¹µãF1£¨0£¬c£©µÄ¾àÀëÓëµ½Ö±Ïßx=-1µÄ¾àÀëÖ®ºÍµÄ×îСֵΪ$\sqrt{6}$£¬Ôò¸ÃË«ÇúÏߵķ½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{{y}^{2}}{2}-\frac{{x}^{2}}{3}$=1B£®y2-$\frac{{x}^{2}}{4}$=1C£®$\frac{{y}^{2}}{4}$-x2=1D£®$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{2}$=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¡°a£¾b¡±ÊÇ¡°3a£¾2b¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÔ²A·½³ÌΪ£¨x+3£©2+y2=9£¬Ô²B·½³ÌΪ£¨x-1£©2+y2=1£¬ÇóÔ²AÓëÔ²BµÄÍ⹫ÇÐÏßÖ±Ïß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸