精英家教网 > 高中数学 > 题目详情

若f(n)为n2+1的各位数字之和(n∈N*),例如:∵142+1=197,1+9+7=17,∴f(14)=17,记:f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n))(k∈N*),则f2009(9)=


  1. A.
    2
  2. B.
    5
  3. C.
    8
  4. D.
    11
D
分析:先利用前几项找到数列的特点或规律,fn(9)是从第三项起以3为周期的循环数列,再求f2009(9)即可.
解答:由92+1=82?f(9)=8+2=10,
102+1=101?f(10)=1+0+1=2,
22+1=5?f(2)=5
52+1=26?f(5)=8
82+1=65?f(8)=11
112+1=122?f(11)=5
…?fn(9)是从第三项起以3为周期的循环数列,
又(2009-2)÷3的余数为0,故f2009(9)=f5(9)=f(8)=11.
故选D.
点评:本题考查了新定义型的题.关于新定义型的题,关键是理解定义,并会用定义来解题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

7、若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17;记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2008(8)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,则f2008(8)=
11

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17则f(14)=17,记f1(n)=f(n),f2(n)=f(f1(n)),fk+1(n)=f(fk(n))k∈N*则f2012(8)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f〔f1(n)〕,…,fk+1(n)=f〔fk(n)〕,k∈N*,则f2012(8)=
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(n)为n2+1(n∈N*)的各位数字之和,如 142+1=197,1+9+7=17则f(14)=17,记f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)]k∈N*,则f2010(8)=
8
8

查看答案和解析>>

同步练习册答案