精英家教网 > 高中数学 > 题目详情
已知数列{an} 中,a1=1,anan-1+(-1)n(n≥2,n∈N),则
a3
a5
的值是(  )
A、
3
4
B、-4
C、-5
D、2
分析:由公式a1=1,anan-1=an-1+(-1)n(n≥2,∈N*),分别求出a2,a3,a4,a5,然后再求
a3
a5
解答:解:由已知得a2=1+(-1)2=2,
∴a3•a2=a2+(-1)3,∴a3=
1
2

1
2
a4=
1
2
+(-1)4,∴a4=3,
∴3a5=3+(-1)5,∴a5=
2
3

a3
a5
=
1
2
2
3
=
3
4

故选A.
点评:本题考查递推公式的运用,解题时要按照递推思想一步一步地进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案