精英家教网 > 高中数学 > 题目详情
若向量abc满足a+b+c=0,且|a|=3,|b|=1,|c|=4,则a·b+b·c+c·a=________.

思路分析:由题目条件|c|=|a|+|b|,a+b+c=0,

可得abc三向量共线,其中ab同向,与c方向相反.

a·b+a·c+b·c=3×1+3×4×(-1)+1×4×(-1)=-13.

答案:-13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若向量
a
b
c
满足
a
+
b
+
c
=
0
,|
a
|=3,|
b
|=1,|
c
|=4,则
a•
b
+
b
c
+
c
a
等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
b
c
满足
a
b
a
c
,则
c
•(
a
+2
b
)=(  )
A、4B、3C、2D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
b
c
满足
a
b
a
c
,则
c
•(
a
+2
b
)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
b
c
满足
a
b
a
c
,则
c
(
a
+2
b
)
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)若向量
a
b
c
满足
a
b
,且
b
c
=0,则(2
a
+
b
)
c
=(  )

查看答案和解析>>

同步练习册答案