精英家教网 > 高中数学 > 题目详情
连掷两次骰子得到的点数分别为m和n,若记向量
a
=(m,n)与向量
b
=(1,-2)
的夹角为θ,则θ为锐角的概率是______.
设连掷两次骰子得到的点数记为(m n),其结果有36种情况,若向量
a
=(m,n)
与向量
b
=(1,-2)
的夹角θ为锐角,则
m-2m>0
-2m-n≠0
,满足这个条件的有6种情况,
所以θ为锐角的概率是
1
6

故答案为
1
6
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若连掷两次骰子分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(    )

A.             B.               C.               D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(  )
A.
11
36
B.
1
6
C.
1
4
D.
7
36

查看答案和解析>>

科目:高中数学 来源:《第3章 概率》2013年单元测试卷(解析版) 题型:选择题

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

若连掷两次骰子,分别得到的点数是m、n,将m、n作为点P的坐标,则点P落在区域|x-2|+|y-2|≤2内的概率是(    )

A.              B.              C.            D.

查看答案和解析>>

同步练习册答案