精英家教网 > 高中数学 > 题目详情

函数,若f(1)+f(a)=2,则a的所有可能值为:

[  ]

A.1

B.

C.1,

D.1,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)>f(lg
1
x
)
,则x的取值范围为
0<x<
1
10
或x>10
0<x<
1
10
或x>10

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=f(x)(x∈R)有下列命题:
(1)在同一坐标系中,y=f(x-1)与y=f(-x+1)的图象关于直线x=-1对称;
(2)若f(2-x)=f(x),则函数y=f(x)的图象关于直线x=1对称;
(3)若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期;
(4)若f(2-x)=-f(x),则函数y=f(x)的图象关于(1,0)对称.其中正确命题的序号是
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=x2,g(x)为一次函数,且为增函数,若f[g(x)]=4x2-20x+15,求g(x)的解析式;

(2)已知af(x)+bf()=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);

(3)f(x)是R上的奇函数,且x∈(-∞,0)时,f(x)=x2+2x,求f(x);

(4)某工厂生产一种机器的固定成本为5 000元,且每生产100部,需要增加投入2 500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部,已知销售收入的函数为H(x)=500x-x2,其中x是产品售出的数量,且0≤x≤500.若x为年产量,y表示利润,求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

已知某地每单位面积的菜地年平均使用氮肥量与每单位面积蔬菜年平均产量之间有的关系如下数据:

年份

x(kg)

y(t)

1985

70

5.1

1986

74

6.0

1987

80

6.8

1988

78

7.8

1989

85

9.0

1990

92

10.2

1991

90

10.0

1992

95

12.0

1993

92

11.5

1994

108

11.0

1995

115

11.8

1996

123

12.2

1997

130

12.5

1998

138

12.8

1999

145

13.0

(1)求xy之间的相关系数,并检验是否线性相关;

(2)若线性相关,则求蔬菜产量y与使用氮肥x之间的回归直线方程,并估计每单位面积施150kg时,每单位面积蔬菜的平均产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

在一次恶劣气候的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人。请你根据所给数据判定是否在恶劣气候飞行中男人比女人更容易晕机?

查看答案和解析>>

同步练习册答案