精英家教网 > 高中数学 > 题目详情
在矩形ABCD中,AB=
3
,BC=1,E是CD上一点,且
AE
AB
=1
,则
AE
AC
的值为(  )
分析:
DE
=λ
AB
,可得
AE
=
AD
AB
,代入
AE
AB
=1
算出λ=
1
3
,从而得到
AE
关于
AD
AB
表示式,再由
AC
=
AD
+
AB
,代入
AE
AC
结合题中数据即可算出
AE
AC
的值.
解答:解:设
DE
=λ
DC
,即
DE
=λ
AB

AE
=
AD
+
DE
=
AD
AB

AE
AB
=1
即(
AD
AB
AB
=1
∵AD、AB互相垂直,可得
AD
AB
=0
∴(
AD
AB
AB
AB
2
=3λ=1,解之得λ=
1
3

由此可得
DE
=
1
3
AB
AE
=
AD
+
1
3
AB

AC
=
AD
+
AB

AE
AC
=(
AD
+
1
3
AB
)(
AD
+
AB
)=
AD
2
+
4
3
AD
AB
+
1
3
AB
2
=12+
1
3
×(
3
)2
=2
故选:B
点评:本题在矩形中,已知边AB、AD的长度和点E分DC的比值,求向量
AE
AC
的数量积.着重考查了平面向量数量积的定义及运算性质等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上
(1)求证:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知AD=2,AB=a(a>2),E、F、G、H分别是边AD、AB、BC、CD上的点,若AE=AF=CG=CH,问AE取何值时,四边形EFGH的面积最大?并求最大的面积.

查看答案和解析>>

科目:高中数学 来源:设计必修二数学北师版 北师版 题型:044

如图,已知在矩形ABCD中,A(-4,4)、D(5,7),其对角线的交点E在第一象限内且与y轴的距离为一个单位,动点P(x,y)沿矩形一边BC运动,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1-5-5,在矩形ABCD中,过A作对角线BD的垂线AP与BD交于P,过P作BC、CD的垂线PE、PF,分别与BC、CD交于E、F.

1-5-5

求证:AP3=BD·PE·PF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知在矩形ABCD中,||=.设=a, =b, =c,求|a+b+c|.

查看答案和解析>>

同步练习册答案