精英家教网 > 高中数学 > 题目详情

设等差数列的公差和等比数列的公比都是,且

(1)求

(2)判断是否存在一项,使,若存在,求出,若不存在,请说明理由.

(1) 分别为;(2) 即存在一项,使


解析:

(1)显然

 即

 得,而,即

 

 所以分别为

(2)由,得

    ,即存在一项,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是公差d≠0的等差数列,Sn是其前n项的和.
(1)若a1=4,且
S3
3
S4
4
的等比中项是
S5
5
,求数列{an}的通项公式;
(2)是否存在p,q∈N*,且p≠q,使得Sp+q是S2p和S2q的等差中项?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)

个不全相等的正数依次围成一个圆圈。

(Ⅰ)若,且是公差为的等差数列,而是公比为的等比数列;数列的前项和满足:,求通项

(Ⅱ)若每个数是其左右相邻两数平方的等比中项,求证:

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省绍兴市高三上学期期中考试文科数学试卷(解析版) 题型:解答题

已知等比数列的前项和.设公差不为零的等差数列满足:,且成等比.

(Ⅰ) 求

(Ⅱ) 设数列的前项和为.求使的最小正整数的值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009天津卷理)(本小题满分14分)

已知等差数列{}的公差为d(d0),等比数列{}的公比为q(q>1)。设=+…..+ ,=-+…..+(-1 ,n     

== 1,d=2,q=3,求  的值;

=1,证明(1-q)-(1+q)=,n;    

(Ⅲ)   若正数n满足2nq,设的两个不同的排列, ,   证明

本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009天津卷理)(本小题满分14分)

已知等差数列{}的公差为d(d0),等比数列{}的公比为q(q>1)。设=+…..+ ,=-+…..+(-1 ,n     

== 1,d=2,q=3,求  的值;

=1,证明(1-q)-(1+q)=,n;    

(Ⅲ)   若正数n满足2nq,设的两个不同的排列, ,   证明

本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。

查看答案和解析>>

同步练习册答案