·ÖÎö £¨1£©Çó³öº¯ÊýµÄ¶Ô³ÆÖᣬµÃµ½º¯ÊýµÄµ¥µ÷ÐÔ£¬½â¹ØÓÚaµÄ²»µÈʽ×飬½â³ö¼´¿É£»
£¨2£©Ö»Ð躯Êýy=f£¨x£©µÄÖµÓòÊǺ¯Êýy=g£¨x£©µÄÖµÓòµÄ×Ó¼¯£¬Í¨¹ýÌÖÂÛm=0£¬m£¾0£¬m£¼0µÄÇé¿ö£¬µÃµ½º¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶øÈ·¶¨mµÄ·¶Î§¼´¿É£»
£¨3£©Í¨¹ýÌÖÂÛtµÄ·¶Î§£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔÒÔ¼°f£¨2£©£¬f£¨-2£©µÄÖµ£¬µÃµ½¹ØÓÚtµÄ·½³Ì£¬½â³ö¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£ºf£¨x£©µÄ¶Ô³ÆÖáÊÇx=-2£¬
¹Êf£¨x£©ÔÚÇø¼ä[-1£¬1]µÝÔö£¬
¡ßº¯ÊýÔÚÇø¼ä[-1£¬1]´æÔÚÁãµã£¬
¹ÊÓÐ$\left\{\begin{array}{l}{f£¨-1£©¡Ü0}\\{f£¨1£©¡Ý0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{a-8¡Ü0}\\{a¡Ý0}\end{array}\right.$£¬½âµÃ£º0¡Üa¡Ü8£¬
¹ÊËùÇóʵÊýaµÄ·¶Î§ÊÇ[0£¬8]£»
£¨2£©Èô¶ÔÈÎÒâµÄx1¡Ê[1£¬2]£¬×Ü´æÔÚx2¡Ê[1£¬2]£¬Ê¹f£¨x1£©=g£¨x2£©³ÉÁ¢£¬
Ö»Ð躯Êýy=f£¨x£©µÄÖµÓòÊǺ¯Êýy=g£¨x£©µÄÖµÓòµÄ×Ó¼¯£¬
a=0ʱ£¬f£¨x£©=x2+4x-5£¬x¡Ê[1£¬2]µÄÖµÓòÊÇ[0£¬7]£¬
ÏÂÃæÇóg£¨x£©£¬x¡Ê[1£¬2]µÄÖµÓò£¬
Áît=4x-1£¬Ôòt¡Ê[1£¬4]£¬y=mt-2m+7£¬
¢Ùm=0ʱ£¬g£¨x£©=7Êdz£Êý£¬²»ºÏÌâÒ⣬ÉáÈ¥£»
¢Úm£¾0ʱ£¬g£¨x£©µÄÖµÓòÊÇ[7-m£¬2m+7]£¬
Ҫʹ[0£¬7]⊆[7-m£¬2m+7]£¬
Ö»Ðè$\left\{\begin{array}{l}{7-m¡Ü0}\\{2m+7¡Ý7}\end{array}\right.$£¬½âµÃ£ºm¡Ý7£»
¢Ûm£¼0ʱ£¬g£¨x£©µÄÖµÓòÊÇ[2m+7£¬7-m]£¬
Ҫʹ[0£¬7]⊆[2m+7£¬7-m]£¬
Ö»Ðè$\left\{\begin{array}{l}{2m+7¡Ü0}\\{7-m¡Ý7}\end{array}\right.$£¬½âµÃ£ºm¡Ü-$\frac{7}{2}$£¬
×ÛÉÏ£¬mµÄ·¶Î§ÊÇ£¨-¡Þ£¬-$\frac{7}{2}$]¡È[7£¬+¡Þ£©£»
£¨3£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{t£¼2}\\{6-4t£¾0}\end{array}\right.$£¬½âµÃ£ºt£¼$\frac{3}{2}$£¬
¢Ùt¡Ü-6ʱ£¬ÔÚÇø¼ä[t£¬2]ÉÏ£¬f£¨t£©×î´ó£¬f£¨-2£©×îС£¬
¡àf£¨t£©-f£¨-2£©=t2+4t+4=6-4t£¬
¼´t2+8t-2=0£¬½âµÃ£ºt=-4-3$\sqrt{2}$»òt=-4+3$\sqrt{2}$£¨ÉáÈ¥£©£»
¢Ú-6£¼t¡Ü-2ʱ£¬ÔÚÇø¼ä[t£¬2]ÉÏ£¬f£¨2£©×î´ó£¬f£¨-2£©×îС£¬
¡àf£¨2£©-f£¨-2£©=16=6-4t£¬½âµÃ£ºt=-$\frac{5}{2}$£»
¢Û-2£¼t£¼$\frac{3}{2}$ʱ£¬ÔÚÇø¼ä[t£¬2]ÉÏ£¬f£¨2£©×î´ó£¬f£¨t£©×îС£¬
¡àf£¨2£©-f£¨t£©=-t2-4t+12=6-4t£¬
¼´t2=6£¬½âµÃ£ºt=$\sqrt{6}$»òt=-$\sqrt{6}$£¬
¹Ê´Ëʱ²»´æÔÚ³£ÊýtÂú×ãÌâÒ⣬
×ÛÉÏ£¬´æÔÚ³£ÊýtÂú×ãÌâÒ⣬
t=-4-3$\sqrt{2}$»òt=-$\frac{5}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ¡¢×îÖµÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°·ÖÀàÌÖÂÛ˼Ï롢ת»¯Ë¼Ï룬¼¯ºÏ˼Ï룬ÊÇÒ»µÀ×ÛºÏÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨x-1£©2+£¨y+4£©2=2 | B£® | £¨x+1£©2+£¨y-4£©2=2 | C£® | £¨x-1£©2+£¨y-4£©2=2 | D£® | £¨x+1£©2+£¨y+4£©2=2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $y=-\frac{1}{32}$ | B£® | B | C£® | C | D£® | D |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | $\sqrt{14}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com