12£®ÒÑÖªº¯Êýf£¨x£©=x2+4x+a-5£¬g£¨x£©=m•4x-1-2m+7£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[-1£¬1]ÉÏ´æÔÚÁãµã£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©µ±a=0ʱ£¬Èô¶ÔÈÎÒâµÄx1¡Ê[1£¬2]£¬×Ü´æÔÚx2¡Ê[1£¬2]£¬Ê¹f£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨3£©Èôy=f£¨x£©£¨x¡Ê[t£¬2]£©µÄÖÃÓÚÎªÇø¼äD£¬ÊÇ·ñ´æÔÚ³£Êýt£¬Ê¹Çø¼äDµÄ³¤¶ÈΪ6-4t£¿Èô´æÔÚ£¬Çó³ötµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨×¢£ºÇø¼ä[p£¬q]µÄ³¤¶Èq-p£©

·ÖÎö £¨1£©Çó³öº¯ÊýµÄ¶Ô³ÆÖᣬµÃµ½º¯ÊýµÄµ¥µ÷ÐÔ£¬½â¹ØÓÚaµÄ²»µÈʽ×飬½â³ö¼´¿É£»
£¨2£©Ö»Ð躯Êýy=f£¨x£©µÄÖµÓòÊǺ¯Êýy=g£¨x£©µÄÖµÓòµÄ×Ó¼¯£¬Í¨¹ýÌÖÂÛm=0£¬m£¾0£¬m£¼0µÄÇé¿ö£¬µÃµ½º¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶øÈ·¶¨mµÄ·¶Î§¼´¿É£»
£¨3£©Í¨¹ýÌÖÂÛtµÄ·¶Î§£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔÒÔ¼°f£¨2£©£¬f£¨-2£©µÄÖµ£¬µÃµ½¹ØÓÚtµÄ·½³Ì£¬½â³ö¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ£ºf£¨x£©µÄ¶Ô³ÆÖáÊÇx=-2£¬
¹Êf£¨x£©ÔÚÇø¼ä[-1£¬1]µÝÔö£¬
¡ßº¯ÊýÔÚÇø¼ä[-1£¬1]´æÔÚÁãµã£¬
¹ÊÓÐ$\left\{\begin{array}{l}{f£¨-1£©¡Ü0}\\{f£¨1£©¡Ý0}\end{array}\right.$£¬¼´$\left\{\begin{array}{l}{a-8¡Ü0}\\{a¡Ý0}\end{array}\right.$£¬½âµÃ£º0¡Üa¡Ü8£¬
¹ÊËùÇóʵÊýaµÄ·¶Î§ÊÇ[0£¬8]£»
£¨2£©Èô¶ÔÈÎÒâµÄx1¡Ê[1£¬2]£¬×Ü´æÔÚx2¡Ê[1£¬2]£¬Ê¹f£¨x1£©=g£¨x2£©³ÉÁ¢£¬
Ö»Ð躯Êýy=f£¨x£©µÄÖµÓòÊǺ¯Êýy=g£¨x£©µÄÖµÓòµÄ×Ó¼¯£¬
a=0ʱ£¬f£¨x£©=x2+4x-5£¬x¡Ê[1£¬2]µÄÖµÓòÊÇ[0£¬7]£¬
ÏÂÃæÇóg£¨x£©£¬x¡Ê[1£¬2]µÄÖµÓò£¬
Áît=4x-1£¬Ôòt¡Ê[1£¬4]£¬y=mt-2m+7£¬
¢Ùm=0ʱ£¬g£¨x£©=7Êdz£Êý£¬²»ºÏÌâÒ⣬ÉáÈ¥£»
¢Úm£¾0ʱ£¬g£¨x£©µÄÖµÓòÊÇ[7-m£¬2m+7]£¬
Ҫʹ[0£¬7]⊆[7-m£¬2m+7]£¬
Ö»Ðè$\left\{\begin{array}{l}{7-m¡Ü0}\\{2m+7¡Ý7}\end{array}\right.$£¬½âµÃ£ºm¡Ý7£»
¢Ûm£¼0ʱ£¬g£¨x£©µÄÖµÓòÊÇ[2m+7£¬7-m]£¬
Ҫʹ[0£¬7]⊆[2m+7£¬7-m]£¬
Ö»Ðè$\left\{\begin{array}{l}{2m+7¡Ü0}\\{7-m¡Ý7}\end{array}\right.$£¬½âµÃ£ºm¡Ü-$\frac{7}{2}$£¬
×ÛÉÏ£¬mµÄ·¶Î§ÊÇ£¨-¡Þ£¬-$\frac{7}{2}$]¡È[7£¬+¡Þ£©£»
£¨3£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{t£¼2}\\{6-4t£¾0}\end{array}\right.$£¬½âµÃ£ºt£¼$\frac{3}{2}$£¬
¢Ùt¡Ü-6ʱ£¬ÔÚÇø¼ä[t£¬2]ÉÏ£¬f£¨t£©×î´ó£¬f£¨-2£©×îС£¬
¡àf£¨t£©-f£¨-2£©=t2+4t+4=6-4t£¬
¼´t2+8t-2=0£¬½âµÃ£ºt=-4-3$\sqrt{2}$»òt=-4+3$\sqrt{2}$£¨ÉáÈ¥£©£»
¢Ú-6£¼t¡Ü-2ʱ£¬ÔÚÇø¼ä[t£¬2]ÉÏ£¬f£¨2£©×î´ó£¬f£¨-2£©×îС£¬
¡àf£¨2£©-f£¨-2£©=16=6-4t£¬½âµÃ£ºt=-$\frac{5}{2}$£»
¢Û-2£¼t£¼$\frac{3}{2}$ʱ£¬ÔÚÇø¼ä[t£¬2]ÉÏ£¬f£¨2£©×î´ó£¬f£¨t£©×îС£¬
¡àf£¨2£©-f£¨t£©=-t2-4t+12=6-4t£¬
¼´t2=6£¬½âµÃ£ºt=$\sqrt{6}$»òt=-$\sqrt{6}$£¬
¹Ê´Ëʱ²»´æÔÚ³£ÊýtÂú×ãÌâÒ⣬
×ÛÉÏ£¬´æÔÚ³£ÊýtÂú×ãÌâÒ⣬
t=-4-3$\sqrt{2}$»òt=-$\frac{5}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔ¡¢×îÖµÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°·ÖÀàÌÖÂÛ˼Ï롢ת»¯Ë¼Ï룬¼¯ºÏ˼Ï룬ÊÇÒ»µÀ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÉèÊýÁÐ{an}Âú×ãan=3an-1+2£¨n¡Ý2£¬n¡ÊN*£©£¬ÇÒa1=2£¬bn=log3£¨an+1£©£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{anbn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¼¯ºÏAÊǺ¯Êý$f£¨x£©={log_{\frac{1}{2}}}£¨{x-1}£©$µÄ¶¨ÒåÓò£¬¼¯ºÏBÊǺ¯Êýg£¨x£©=2x£¬x¡Ê[-1£¬2]µÄÖµÓò£®
£¨1£©Ç󼯺ÏA£»
£¨2£©Ç󼯺ÏB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Ô²ÐÄÔÚÖ±Ïß2x-y-6=0ÉϵÄÔ²CÓëyÖá½»ÓÚÁ½µãA£¨0£¬-5£©£¬B£¨0£¬-3£©£¬ÔòÔ²CµÄ·½³ÌÊÇ£¨¡¡¡¡£©
A£®£¨x-1£©2+£¨y+4£©2=2B£®£¨x+1£©2+£¨y-4£©2=2C£®£¨x-1£©2+£¨y-4£©2=2D£®£¨x+1£©2+£¨y+4£©2=2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖª²»µÈʽ£¨m-n£©2+£¨m-lnn+¦Ë£©2¡Ý2¶ÔÈÎÒâm¡ÊR£¬n¡Ê£¨0£¬+¡Þ£©ºã³ÉÁ¢£¬ÔòʵÊý¦ËµÄȡֵ·¶Î§Îª¦Ë¡Ý1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªÅ×ÎïÏßx2=2px£¨p£¾0£©¾­¹ýµãÏß$M£¨{\frac{1}{2}£¬2}£©$£¬ÔòËüµÄ×¼Ïß·½³ÌΪ£¨¡¡¡¡£©
A£®$y=-\frac{1}{32}$B£®BC£®CD£®D

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔÚ¿Õ¼äÖ±½Ç×ø±êÖУ¬µãP£¨-1£¬-2£¬-3£©µ½Æ½ÃæxOzµÄ¾àÀëÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®$\sqrt{14}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬±ß³¤Îª2µÄÕý·½ÐÎABCDËùÔÚÆ½ÃæÓëÈý½ÇÐÎCDEËùÔÚÆ½ÃæÏཻÓÚCD£¬AE¡ÍÆ½ÃæCDE£¬ÇÒAE=1£®
£¨1£©ÇóÖ¤£ºAB¡ÎÆ½ÃæCDE£»
£¨2£©ÇóÖ¤£ºDE¡ÍÆ½ÃæABE£»
£¨3£©ÇóÈýÀâ×¶B-ADEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈçͼËùʾ£¬ÕýÈý½ÇÐÎABCµÄÍâ½ÓÔ²°ë¾¶Îª2£¬Ô²ÐÄΪO£¬PB=PC=2£¬DΪAPÉÏÒ»µã£¬AD=2DP£¬µãDÔÚÆ½ÃæABCÄÚµÄÉäӰΪԲÐÄO£®
£¨¢ñ£©ÇóÖ¤£ºDO¡ÎÆ½ÃæPBC£»
£¨¢ò£©ÇóÆ½ÃæCBDºÍÆ½ÃæOBDËù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸