精英家教网 > 高中数学 > 题目详情
已知是等比数列,>,又知+2+=25,那么__________.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
OM
=x
OA
ON
=y
OB

(1)求证:x与y的关系为y=
x
x+1

(2)设f(x)=
x
x+1
,定义函数F(x)=
1
f(x)
-1(0<x≤1)
,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
1
2
的等比数列,O为原点,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在点Q(1,m),使得
OP
OQ
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0,bn=
9
10
(n+2)(an-1)

(1)求证:数列{an-1}是等比数列;  
(2)当n取何值时,{bn}取最大值,并求出最大值;
(3)若
tm
bm
tm+1
bm+1
对任意m∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+1,g(x)=x,x∈R,数列{an},{bn}满足条件:a1=1,an=f(bn)=g(bn+1),n∈N*
(1)求证:数列{bn+1}为等比数列;
(2)令cn=
2n
an•an+1
,Tn是数列{cn}的前n项和,求使Tn
2011
2012
成立的最小的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+x-6,g(x)=2x+1,α、β是方程f(x)=0的两个根(α>β).
(1)求α、β的值;
(2)数列{an}满足:a1=1,an+1=g(an),求an
(3)数列{an}满足:a1=3,an+1=an-
f(an)
g(an)
,(n=1,2,3,…)
bn=ln
an
an
,(n=1,2,…),求证数列{bn}为等比数列,并求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•潍坊二模)已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)•g(bn)=f(
b
 
n
)(n∈N*)

(I)求an并证明数列{bn-1}是等比数列;
(II)若数列{cn}满足cn=
an
4n-1•(bn-1)
,证明:c1+c2+c3+…+cn<3.

查看答案和解析>>

同步练习册答案