精英家教网 > 高中数学 > 题目详情

设f(x)与f(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是

[  ]
A.

[1,4]

B.

[2,4]

C.

[3,4]

D.

[2,3]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)的定义域为(0,+∞),f(x)的导函数为f'(x),且对任意正数x均有f′(x)>
f(x)
x

(1)判断函数F(x)=
f(x)
x
在(0,+∞)上的单调性;
(2)设x1,x2∈(0,+∞),比较f(x1)+f(x2)与f(x1+x2)的大小,并证明你的结论;
(3)设x1,x2,…xn∈(0,+∞),若n≥2,比较f(x1)+f(x2)+…+f(xn)与f(x1+x2+…+xn)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

设f(x)是定义在[-1,1]上的偶函数,f(x)与g(x)的图象关于直线x=1对称,且当x∈[2,3]时,g(x)=2a(x-2)-4(x-2)3

(Ⅰ)求f(x)的表达式;

(Ⅱ)是否存在正实数a,使得f(x)的图象的最高点在直线y=12上?若存在,求出正实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:浙江省瑞安中学2012届高三10月月考数学文科试题 题型:044

已知函数,g(x)=lnx.

(1)设F(x)=f(x)+g(x),当a=2时,求F(x)在上的单调区间;

(2)在条件(1)下,若对任意(e为自然对数的底数)均有|F(x1)-F(x2)|<3m+-6恒成立,求实数m的取值范围;

(3)设G(x)=f(x)-g(x)在x=1处的切线与坐标轴围成的三角形面积为S,存在α∈N*且a≠4使得t≤S成立,求最大的整数t的值.

查看答案和解析>>

科目:高中数学 来源:沅江市模拟 题型:解答题

设f(x)的定义域为(0,+∞),f(x)的导函数为f'(x),且对任意正数x均有f′(x)>
f(x)
x

(1)判断函数F(x)=
f(x)
x
在(0,+∞)上的单调性;
(2)设x1,x2∈(0,+∞),比较f(x1)+f(x2)与f(x1+x2)的大小,并证明你的结论;
(3)设x1,x2,…xn∈(0,+∞),若n≥2,比较f(x1)+f(x2)+…+f(xn)与f(x1+x2+…+xn)的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案