精英家教网 > 高中数学 > 题目详情

函数数学公式,则f-1(1)=________.

0
分析:欲求f-1(1),根据原函数的反函数为f-1(x)知,只要求满足于f(x)=1的x的值即可,故只要解方程+1=1即得.
解答:令f(t)=1,则t=f-1(1)(0≤t)
+1=1?t=0,
故答案为:0.
点评:本题主要考查了反函数,一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x=f(y).若对于y在C中的任何一个值,通过x=f(y),x在A中都有唯一的值和它对应,那么,x=f(y)就表示y是自变量,x是因变量y的函数,这样的函数x=f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=
2a-3
a+1
,则实数a的取值范围是(  )
A、(-∞,
2
3
)
B、(-∞,-1)∪(
2
3
,+∞)
C、(-1,
2
3
)
D、(-∞,-1)∪(-1,
2
3
)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①函数f(x)=x+
2
x
(x∈(0,1))
的最小值是2
2

②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x)且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x);
③如果y=f(x)是可导函数,则f′(x0)=0是函数y=f(x)在x=x0处取到极值的必要不充分条件;
④已知存在实数x使得不等式|x+1|-|x-1|≤a成立,则实数a的取值范围是a≥2.
其中正确的命题是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•眉山一模)对于定义在R上的函数f(x),有下述命题:
①若f(x)是奇函数,则f(x-1)的图象关于点A(1,0)对称;
②若函数f(x-1)的图象关于直线x=1对称,则f(x)为偶函数;
③若对x∈R,有f(x)=f(2-x),则函数f(x)关于直线x=1对称;
④若对x∈R,有f(x+1)=-
1f(x)
,则f(x)的最小值正周期为4.
其中正确命题的序号是
①②③
①②③
.(填写出所有的命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

科目:高中数学 来源:2010-2011年河北省保定市高二下学期第二次阶段性考试数学 题型:选择题

设函数f(x)是定义在R上周期为3的奇函数,若f(1)<1,f(2)=,则

A. a<-1或a>0                     B.-1<a<0

C. a<且a≠-1                     D.-1<a<2

 

查看答案和解析>>

同步练习册答案