精英家教网 > 高中数学 > 题目详情

如图所示,圆锥SO的轴截面△SAB是边长为4的正三角形,M为母线SB的中点,过直线AM作平面β⊥面SAB,设β与圆锥侧面的交线为椭圆C,则椭圆C的短半轴为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    2
A
分析:过C作平行于圆锥底面的截面(圆形),交AS、BS于R、T,交椭圆C于两点P、Q,则P、Q即是椭圆短半轴顶点,先利用轴截面△SAB是边长为4的正三角形,C为AM的中点,计算RC,TC的值,再利用相交弦定理即可求得.
解答:解:过椭圆C作平行于圆锥底面的截面(圆形),交AS、BS于R、T,交椭圆C于两点P、Q,则P、Q即是椭圆短半轴顶点
在所作的圆中,RT为直径,如图,
∵轴截面△SAB是边长为4的正三角形,C为AM的中点
∴TC==2,RC==1,
∵PQ⊥RT,∴PC=CQ
∴利用相交弦定理可得:PC×CQ=TC×RC

∴椭圆C的短半轴为
故选A.
点评:本题以圆锥为载体,考查圆锥的截面问题,考查椭圆的性质,解题的关键是确定椭圆短半轴顶点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•泉州模拟)如图所示,圆锥SO的轴截面△SAB是边长为4的正三角形,M为母线SB的中点,过直线AM作平面β⊥面SAB,设β与圆锥侧面的交线为椭圆C,则椭圆C的短半轴为(  )

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一下学期第一次月考数学试卷(解析版) 题型:解答题

如图所示,已知在圆锥SO中,底面半径r=1,母线长l=4,M为母线SA上的一个点,且SMx,从点M拉一根绳子,围绕圆锥侧面转到点A,求:

(1)设f(x)为绳子最短长度的平方,求f(x)表达式;

(2)绳子最短时,顶点到绳子的最短距离;

(3)f(x)的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2011年福建省泉州市高三质量检测数学试卷(理科)(解析版) 题型:选择题

如图所示,圆锥SO的轴截面△SAB是边长为4的正三角形,M为母线SB的中点,过直线AM作平面β⊥面SAB,设β与圆锥侧面的交线为椭圆C,则椭圆C的短半轴为( )

A.
B.
C.
D.2

查看答案和解析>>

同步练习册答案