精英家教网 > 高中数学 > 题目详情

设过定点A的直线l1的倾斜角为α.现将直线l1绕点A按逆时针方向旋转45°得到直线l2,设直线l2的倾斜角为β,请用α表示β的值.

答案:
解析:

  解:画出如图的示意图,从图中可得

  当0°≤α<135°时,β=α+45°;

  当135°≤α<180°时,β=α+45°-180°=α-135°.


提示:

先画出示意图,根据图形求解.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,两条过原点O的直线l1,l2分别与x轴、y轴成30°的角,已知线段PQ的长度为2,且点P(x1,y1)在直线l1上运动,点Q(x2,y2)在直线l2上运动.
(Ⅰ)求动点M(x1,x2)的轨迹C的方程;
(Ⅱ)设过定点T(0,2)的直线l与(Ⅰ)中的轨迹C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L与抛物线C:x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B(2,0)
(1)求点A的横坐标.
(2)设动点M满足
AB
BM
+
2
|
AM
|=0
,点M的轨迹K.若过点B的直线L1(斜率不等于0)与轨迹K交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄浦区二模)已知定点F(2,0),直线l:x=2,点P为坐标平面上的动点,过点P作直线l的垂线,垂足为点Q,且
FQ
⊥(
PF
+
PQ
)
.设动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点F的直线l1与曲线C有两个不同的交点A、B,求证:
1
|AF|
+
1
|BF|
=
1
2

(3)记
OA
OB
的夹角为θ(O为坐标原点,A、B为(2)中的两点),求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省株洲二中高三(下)第十次月考数学试卷(文科)(解析版) 题型:解答题

如图,两条过原点O的直线l1,l2分别与x轴、y轴成30°的角,已知线段PQ的长度为2,且点P(x1,y1)在直线l1上运动,点Q(x2,y2)在直线l2上运动.
(Ⅰ)求动点M(x1,x2)的轨迹C的方程;
(Ⅱ)设过定点T(0,2)的直线l与(Ⅰ)中的轨迹C交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.

查看答案和解析>>

同步练习册答案