精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+
1
2
sinθx2-2x+c的图象经过点(1,
37
6
)
,且在区间(-2,1)上单调递减,在[1,+∞)上单调递增.
(1)证明sinθ=1;
(2)求f(x)的解析式;
(3)若对于任意的x1,x2∈[m,m+3](m≥0),不等式|f(x1)-f(x2)|≤
45
2
恒成立,试问:这样的m是否存在,若存在,请求出m的范围;若不存在,说明理由.
(1)∵f'(x)=3ax2+(sinθ)x-2
由题设可知
f′(1)=0
f′(-2)≤0
3a+sinθ-2=0 ①
12a-2sinθ-2≤0②

由①得:a=
2-sinθ
3
,代入②得:12×
2-sinθ
3
-2sinθ-2≤0,
化简得:sinθ≥1,
∴sinθ=1;

(2)将sinθ=1代入①式得:a=
1
3
,则f(x)=
1
3
x3+
1
2
x2-2x+c,
而又由f(1)=
37
6
,代入得c=
22
3

∴f(x)=
1
3
x3+
1
2
x2-2x+
22
3
即为所求;

(3)f′(x)=x2+x-2=(x+2)(x-1)
易知f(x)在(-∞,-2)及(1,+∞)上均为增函数,在(-2,1)上为减函数.
(i)当m>1时,f(x)在[m,m+3]上递增.故f(x)max=f(m+3),f(x)min=f(m)
由f(m+3)-f(m)=
1
3
(m+3)3+
1
2
(m+3)2-2(m+3)-
1
3
m3-
1
2
m2+2m
=3m2+12m+
15
2
45
2
,得-5≤m≤1.这与条件矛盾故舍去;
(ii)当0≤m≤1时,f(x)在[m,1]上递减,在[1,m+3]上递增,
∴f(x)min=f(1),f(x)max={f(m),f(m+3)}max,
又f(m+3)-f(m)=3m2+12m+
15
2
=3(m+2)2-
9
2
>0(0≤m≤1)
∴f(x)max=f(m+3)
∴|f(x1)-f(x2)|≤f(x)max-f(x)min=f(m+3)-f(1)≤f(4)-f(1)=
45
2
恒成立,
故当0≤m≤1原式恒成立.
综上:存在m且m∈[0,1]合乎题意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案