精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,E是棱CC1上的动点,F是AB中点,AC=BC=2,
AA1=4.
(Ⅰ)求证:CF⊥平面ABB1
(Ⅱ)若二面角A-EB1-B的大小是45°,求CE的长.
分析:(I)由直棱柱的结构特征可得BB1⊥平面ABC,进而由线面垂直的性质得到CF⊥BB1,进而由等腰三角形三线合一可得CF⊥AB,进而由线面垂直的判定定理得到CF⊥平面ABB1
(Ⅱ)以C为坐标原点,射线CA,CB,CC1为x,y,z轴正半轴,建立空间直角坐标系C-xyz,设E(0,0,m),分别求出平面AEB1的法向量及平面EBB1的法向量,结合二面角A-EB1-B的大小是45°,构造关于m的方程,解方程求出m值,进而可得CE的长.
解答:证明:(Ⅰ)∵三棱柱ABC-A1B1C1是直棱柱,
∴BB1⊥平面ABC.
又∵CF?平面ABC,
∴CF⊥BB1
∵∠ACB=90°,AC=BC=2,F是AB中点,
∴CF⊥AB.
又∵BB1∩AB=B,BB1?平面ABB1,AB?平面ABB1
∴CF⊥平面ABB1
解:(Ⅱ)以C为坐标原点,射线CA,CB,CC1为x,y,z轴正半轴,建立如图所示的空间直角坐标系C-xyz,
则C(0,0,0),A(2,0,0),B1(0,2,4).
设E(0,0,m),平面AEB1的法向量
n
=(x,y,z)

AB1
=(-2,2,4)
AE
=(-2,0,m)

AB1
n
AE
n

于是
AB1
n
=-2x+2y+4z=0
AE
n
=-2x+0y+mz=0.

所以
x=
mz
2
y=
mz-4z
2
.

取z=2,则
n
=(m,m-4,2)

∵三棱柱ABC-A1B1C1是直棱柱,
∴BB1⊥平面ABC.
又∵AC?平面ABC,
∴AC⊥BB1
∵∠ACB=90°,
∴AC⊥BC.
∵BB1∩BC=B,
∴AC⊥平面ECBB1
CA
是平面EBB1的法向量,
CA
=(2,0,0)

∵二面角A-EB1-B的大小是45°,
cos45°=
CA
n
|
CA
||
n
|
=
2m
m2+(m-4)2+22
=
2
2

解得m=
5
2

CE=
5
2
点评:本题考查的知识点是用空间向量求平面间的夹角,两点之间的距离运算,向量语言表示面面夹角,是一道与二面角有关的立体几何综合题,难度中档.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案