精英家教网 > 高中数学 > 题目详情

给定函数

(1)试求函数f(x)的单调减区间;

(2)已知各项均为负的数列{an}满足,求证:

(3)设,Tn为数列{bn}的前n项和,求证:

答案:
解析:

  (1)的定义域为  1分(此处不写定义域,结果正确不扣分)

    3分

  由

  单调减区间为  5分(答案写成(0,2)扣1分;不写区间形式扣1分)

  (2)由已知可得,当时,

  两式相减得

  ∴

  当时,,若,则这与题设矛盾

  ∴ ∴  8分

  于是,待证不等式即为

  为此,我们考虑证明不等式

  令

  再令 由

  ∴当时,单调递增 ∴ 于是

  即 ①

  令 由

  ∴当时,单调递增 ∴ 于是

  即  ②

  由①、②可知  10分

  所以,,即  11分

  (3)由(2)可知 则  12分

  在中令n=1,2,3……2010,2011并将各式相加得

    13分

  即  14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区模拟)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)给定两个函数:f1(x)=
1
x
(x>0)
,f2(x)=logax(a>1,x>0).证明:f1(x)∉M,f2(x)∈M.
(3)试利用(2)的结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+1-aa-x
,a∈R
.利用函数y=f(x)构造一个数列{xn},方法如下:对于定义域中给定的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n∈N*),…如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn}.
(1)求实数a的值;
(2)若x1=1,求(x1+1)(x2+1)…(xn+1)的值;
(3)设Tn=(x1+1)(x2+1)…(xn+1)(n∈N*),试问:是否存在n使得Tn+Tn+1+…+Tn+2006=2006成立,若存在,试确定n及相应的x1的值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在D上的函数,若对D中的任意两数x1,x2(x1≠x2),恒有f(
1
3
x1+
2
3
x2
)<
1
3
f(x1)+
2
3
f(x2)
,则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数f(x)=x2是否为定义域上的C函数,并说明理由;
(Ⅱ)若函数f(x)是R上的奇函数,试证明f(x)不是R上的C函数;
(Ⅲ)设f(x)是定义在D上的函数,若对任何实数a∈[0,1]以及D中的任意两数x1,x2(x1≠x2),恒有f(ax1+(1-a)x2)≤af(x1)+(1-a)f(x2),则称f(x)为定义在D 上的π函数.已知f(x)是R上的m函数.m是给定的正整数,设an=f(n),n=0,1,2,…m,且a0=0,am=2m,记Sf=a1+a2+…+am.对于满足条件的任意函数f(x),试求Sf的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),若存在开区间D,同时满足:①存在t∈D,当x<t时,函数f(x)单调递减,当x>t时,函数f(x)单调递增;②对任意x>0,只要t-x,t+x∈D,都有f(t-x)>f(t+x),则称y=f(x)为D内的“勾函数”.
(1)证明:函数y=|logax|(a>0,a≠1)为(0,+∞)内的“勾函数”;
(2)若D内的“勾函数”y=g(x)的导函数为y=g′(x),y=g(x)在D内有两个零点x1,x2,求证:g′(
x1+x2
2
)
>0;
(3)对于给定常数λ,是否存在m,使函数h(x)=
1
3
λx3-
1
2
λ2x2-2λ3x+1在(m,+∞)内为“勾函数”?若存在,试求出m的取值范围,若不存在,说明理由.

查看答案和解析>>

同步练习册答案