精英家教网 > 高中数学 > 题目详情
椭圆
x2
5
+
y2
4
=1
的一个焦点坐标是(  )
A.(3,0)B.(0,3)C.(1,0)D.(0,1)
由椭圆
x2
5
+
y2
4
=1
得a2=5,b2=4,∴c=
a2-b2
=1.
可得焦点为(±1,0).
故选C.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过椭圆
x2
5
+
y2
4
=1
的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为(  )
A、2
B、
2
3
C、1
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
5
+
y2
4
=1
的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网过椭圆
x2
5
+
y2
4
=1的左焦点F作椭圆的弦AB.如图
(1)求此椭圆的左焦点F的坐标和椭圆的准线方程(x=±
a2
c
);
(2)求弦AB中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线mx+ny=4和圆:x2+y2=4没有公共点,则过点(m,n)直线与椭圆
x2
5
+
y2
4
=1
的交点的个数(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过椭圆
x2
5
+
y2
4
=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为
5
3
5
3

查看答案和解析>>

同步练习册答案