精英家教网 > 高中数学 > 题目详情

甲、乙两个篮球运动员投篮命中率分别为0.70.6,每人投篮3次,求:

(1)二人进球数相等的概率;

(2)甲比乙进球多的概率.(结果保留三位有效数字)

答案:略
解析:

解析:(1)记事件“二人进球相等”为A,则(甲进k)·P(乙进k),由于甲、乙进球与否相互独立,故(甲进k)·P(乙进k)=

(2)记事件“甲比乙进球多”为B,则(甲至少进k1)·P(乙进k)

(甲至少进k1)·P(乙进k)=[1P(甲进0)]·P(乙进0球)+[P(甲进2球)+P(甲进3)]·P(乙进1球)+P(甲进3)·P(乙进2)=


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
1
2
与p,且乙投球2次均未命中的概率为
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
1
2
与p,且乙投球2次均未命中的概率为
1
16

(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个篮球运动员互不影响地在同一位置上投球,命中率分别为
1
3
与p,且乙投球两次均为命中的概率为
16
25

(1)求乙投球的命中率p;
(2)求甲投三次,至少命中一次的概率;
(3)若甲、乙二人各投两次,求两人共命中两次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009年)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
1
2
3
4

(1)求乙投球2次都不命中的概率;
(2)若甲、乙各投球1次,两人共命中的次数记为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两个篮球运动员在某赛季的得分情况如右侧的茎叶图所示,则(  )

查看答案和解析>>

同步练习册答案