精英家教网 > 高中数学 > 题目详情
已知直三棱柱ABCA1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1DEF分别为B1AC1CBC的中点.

(1)求证:DE∥平面ABC

(2)求证:B1F⊥平面AEF

(3)求二面角B1-AE-F的大小.?

解法一:(1)证明:取AB的中点M,?

DB1A的中点,?

DMBB1.                                                                                                      ?

又由ECC1的中点,易得ECBB1,∴DMEC.                                                ?

∴四边形DMCE是平行四边形.∴DEMC.                                                                    ?

DE平面ABCMC平面ABC,?

DE∥平面ABC.                                                                                                   ?

(2)证明:由已知,△ABC为等腰直角三角形,∠BAC=90°,FBC的中点,

AFBC.有AF⊥平面BB1C1C.                                                                                    ?

B1F平面BB1C1C,∴B1FAF.                                                                       ?

在RT△B1BF和RT△FCE中,由已知可得BC=BB1CC1=BB1,?

=====.?

∴RT△B1BF∽RT△FCE.?

∴∠BB1F=∠EFC.而∠BB1F+∠B1FB=90°,?

∴∠B1FB+∠EFC=90°.?

∴∠B1FE=90°,即B1FEF.                                                                                  ?

AFEF=F,∴B1F⊥平面AEF.                                                                                 ?

(3)解:过FFNAE于点N,连结B1N,设AB=A,                                              ?

B1F⊥平面AEF,∴B1NAE.?

∴∠B1NF为二面角B1-AE-F的平面角.                                                                   ?

AF⊥平面BB1C1CEF平面BB1C1C,?

EFAF.∴在RT△AEF中,可求得FN=A.

在RT△B1FN中,∠B1FN=90°,?

∴tan∠B1NF==.                                                                                        ?

∴∠B1NF=arctan,即二面角B1-AE-F的大小为arctan.                                ?

解法二:以A为原点,以射线ABACAA1分别为xyz轴的正半轴建立空间直角坐标系,设AB=AA1=AC=2A>0,可知各点坐标分别为A(0,0,0),B2A,0,0),C(0,2A,0),B12A,0,2A),E(0,2A,A),FA,A,0),DA,0,A).                                           ?

(1)证明:=(-A,2A,0),又因为(-A,2A,0)=A(-1,2,0),即=A(-1,2,0),?

与向量(-1,2,0)平行.?

设点G(-1,2,0),则=(-1,2,0).                                                            ?

平行,而直线AG在平面ABC内,直线DE在平面ABC外,

DE∥平面ABC.                                                                                                   ?

(2)证明:=(-A,A,-2A),=(A,-A,-A),

=(A,A,0),∴·=-A×A+A×(-A)+(-2A)×(-A)=0,·=-A×A+A×A-2A×0=0.        ?

.?

AFEF=F,∴B1F⊥平面AEF.                                                                                 ?

(3)解:由(2)知=(-A,A,-2A)是平面AEF的一个法向量,设二面角B1-AE-F的大小为θ,根据已知得θ是锐角,设平面AEB1的一个法向量为n=(x,y,1).               ?

=(0,2A,A),=(2A,0,2A),且                                            ?

解之,得

n=(-1,-,1).                                                                                                       ?

∴cosθ==.∴θ=arccos.?

∴二面角B1-AE-F的大小为arccos.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分别是棱CC1、AB中点.
(Ⅰ)求证:CF⊥BB1
(Ⅱ)求四棱锥A-ECBB1的体积;
(Ⅲ)判断直线CF和平面AEB1的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直三棱柱ABC-A1B1C1的所有棱长都相等,且D,E,F分别为BC,BB1,AA1的中点.
(I) 求证:平面B1FC∥平面EAD;
(II)求证:BC1⊥平面EAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′两两垂直,E,F,H分别是AC,AB,BC的中点,
(I)证明:EF⊥AH;    
(II)求四面体E-FAH的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1的侧棱长为2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中点.
(Ⅰ)求异面直线AB和C1D所成的角(用反三角函数表示);
(Ⅱ)若E为AB上一点,试确定点E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的条件下,求点D到平面B1C1E的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分别是棱BC.CC1.B1C1的中点.A1Q=3QA, BC=
2
AA1

(Ⅰ)求证:PQ∥平面ANB1
(Ⅱ)求证:平面AMN⊥平面AMB1

查看答案和解析>>

同步练习册答案