精英家教网 > 高中数学 > 题目详情

(本题满分14分)

为非负实数,函数.

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)讨论函数的零点个数,并求出零点.

解:(Ⅰ)当时,,               --------------1分

① 当时,

上单调递增;                                      --------------2分

② 当时,

上单调递减,在上单调递增;                --------------3分

综上所述,的单调递增区间是,单调递减区间是. ------4分

(Ⅱ)(1)当时,,函数的零点为;   -----5分

(2)当时,,                       --------------6分

故当时,,二次函数对称轴

上单调递增,;                           -----------7分

时,,二次函数对称轴

上单调递减,在上单调递增; ----------------------------------8分

的极大值为

 当,即时,函数轴只有唯一交点,即唯一零点,

解之得

函数的零点为(舍去);      -----------------------10分

 当,即时,函数轴有两个交点,即两个零点,分别为;               -----------------------11分

 当,即时,函数轴有三个交点,即有三个零点,

解得,

∴函数的零点为.   --------------------12分

综上可得,当时,函数的零点为

时,函数有一个零点,且零点为

时,有两个零点
时,函数有三个零点.       --------------------14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案