精英家教网 > 高中数学 > 题目详情
证明f(x)=在(0,+∞)上是减函数.

思路分析:可采用定义法和求导法两种方法来解题,体会求导法在解决函数单调性问题上的优越性.

证明:法一:任取两个数x1,x2∈(0,+∞),设x1<x2,则

f(x1)-f(x2)=-=,

∵x1>0,x2>0且x1<x2,∴f(x1)-f(x2)>0.∴f(x1)>f(x2).

∴f(x)在(0,+∞)上是减函数.

法二:f′(x)=,

∵x>0,∴f′(x)<0.

∴f(x)在(0,+∞)上是减函数.

    辨析比较 比较一下两种方法,用求导证明更简捷一些.如果是更复杂的函数,用导数的符号判断函数的单调性更能显示出它的优越性.

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年湖北省武汉市高三11月调考理科数学试卷(解析版) 题型:解答题

已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>

(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;

(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);

(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省济宁市高一10月月考数学试卷(解析版) 题型:解答题

判断并利用定义证明f(x)=在(-∞,0)上的增减性.

 

查看答案和解析>>

科目:高中数学 来源:2012届江西省南昌市高三第一次模拟测试卷理科数学试卷 题型:填空题

已知向量p=(-cos 2xa),q=(a,2-sin 2x),函数f(x)=p·q-5(aRa≠0)

(1)求函数f(x)(xR)的值域;

(2)当a=2时,若对任意的tR,函数yf(x),x∈(ttb]的图像与直线y=-1有且仅有两个不同的交点,试确定b的值(不必证明),并求函数yf(x)的在[0,b]上单调递增区间.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>

(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;

(Ⅱ)设x1x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1x2);

(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

科目:高中数学 来源:江西省南昌市2011-2012学年高三下学期第一次模拟测试卷(数学理) 题型:解答题

 

已知向量p=(-cos 2xa),q=(a,2-sin 2x),函数f(x)=p·q-5(aRa≠0)

(1)求函数f(x)(xR)的值域;

(2)当a=2时,若对任意的tR,函数yf(x),x∈(ttb]的图像与直线y=-1有且仅有两个不同的交点,试确定b的值(不必证明),并求函数yf(x)的在[0,b]上单调递增区间.

 

 

 

查看答案和解析>>

同步练习册答案