精英家教网 > 高中数学 > 题目详情
(2012•威海二模)从总体中抽取容量为50的样本,数据分组及各组的频数如下:
分组 [22.7,25.7) [25.7,28.7) [28.7,31.7) [31.7,34.7) [34.7,37.7)
频数 4 2 30 10 4
(Ⅰ)估计尺寸在[28.7,34.7)的概率;
(Ⅱ)从样本尺寸在[22.7,28.7)中任选2件,求至少有1个尺寸在[25.7,28.7)的概率.
分析:(Ⅰ)直接求出尺寸在[28.7,34.7)的事件个数,然后求出概率;
(Ⅱ)设尺寸在[22.7,25.7)中的产品编号为a1,a2,a3,a4,在[25.7,28.7)中产品编号为b1,b2,列出所有事件数目,找出尺寸在[25.7,28.7)的数目,即可求解概率.
解答:(本小题满分12分)
解:(Ⅰ)尺寸在[28.7,34.7)中共有40个,所以所求的概率为
40
50
=0.8
--------(4分)
(Ⅱ)设尺寸在[22.7,25.7)中的产品编号为a1,a2,a3,a4,在[25.7,28.7)中产品编号为b1,b2
从样本中尺寸在[22.7,28.7)中任选2件共有:
a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2
15种情况;-------------------(7分)
其中至少有1个尺寸在[25.7,28..7)中的有:
a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a4b1,a4b2,b1b29种情况-----------------------------(10分)
因此所求概率为
9
15
=
3
5
--------------------------------(12分)
点评:本题考查古典概型及其概率计算公式,分布的意义和作用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•威海二模)如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则
AM
AN
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)在等比数列{an}中,a2=
1
4
a3a6=
1
512
.设bn=log2
a
2
n
2•log2
a
2
n+1
2
T
 
n
为数列{bn}的前n项和.
(Ⅰ)求an和Tn
(Ⅱ)若对任意的n∈N*,不等式λTn<n-2(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)如图,边长为2的正方形内有一不规则阴影部分,随机向正方形内投入200粒芝麻,恰有60粒落入阴影部分,则不规则图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是
3
4
2
3
1
4
且各轮次通过与否相互独立.
(I)设该选手参赛的轮次为ξ,求ξ的分布列和数学期望;
(Ⅱ)对于(I)中的ξ,设“函数f(x)=3sin
x+ξ
2
π(x∈R)是偶函数”为事件D,求事件D发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海二模)某商场调查旅游鞋的销售情况,随机抽取了部分顾客的购鞋尺寸,整理得如下频率分布直方图,其中直方图从左至右的前3个小矩形的面积之比为1:2:3,则购鞋尺寸在[39.5,43.5)内的顾客所占百分比为
55%
55%

查看答案和解析>>

同步练习册答案