精英家教网 > 高中数学 > 题目详情

函数是函数的切线,求的值。


解析:

由题意得,由,当时,,∴,当时,,∴,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是二次函数,f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表达式;
(2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数,f(x)=
(x2-2ax)ex,x>0
bx,x≤0
,g(x)=clnx+b
,且x=
2
是函数y=f(x)的极值点.
(1)若方程f(x)-m=0有两个不相等的实数根,求实数m的取值范围;
(2)若直线L是函数y=f(x)的图象在点(2,f(2))处的切线,且直线L与函数Y=G(X)的图象相切于点P(x0,y0),x0∈[e-1,e],求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a,b,c∈R且a≠0),f′(x)是它的导函数,且对任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表达式;
(2)设t>0,曲线C:y=f(x)在点P(t,f(t))处的切线为l,l与坐标轴围成的三角形面积为S(t),求S(t)的最小值.

查看答案和解析>>

科目:高中数学 来源:2013届浙江桐乡高级中学高二第二学期期中考试文科数学试卷(解析版) 题型:解答题

已知函数是函数的极值点,其中

是自然对数的底数.

(Ⅰ)求实数的值;

(Ⅱ)直线同时满足:

是函数的图象在点处的切线,

与函数的图象相切于点

求实数b的取值范围.

 

查看答案和解析>>

同步练习册答案