精英家教网 > 高中数学 > 题目详情
已知集合A={x||x-1|≤1},B={x|x2-4ax+3a2≤0,a≥0}
(1)当a=1时,求集合A∩B;
(2)若A∩B=B,求实数a的取值范围.
分析:(1)求出集合A,当a=1时,求出集合B,利用集合交集的定义,即可得到答案;
(2)根据A∩B=B,可得B⊆A,利用子集关系列出不等式组,求解即可求得实数a的取值范围.
解答:解:(1)由|x-1|≤1,即-1≤x-1≤1,
解得0≤x≤2,
∴A=[0,2],
当a=1时,B={x|x2-4x+3≤0}={x|1≤x≤3},
精英家教网
结合数轴,可知A∩B=[1,2];
(2)∵x2-4ax+3a2≤0,即(x-a)(x-3a)≤0,
又∵a≥0,
∴B={x|a≤x≤3a}
∵A∩B=B,
∴B⊆A,
精英家教网
结合数轴可得,
a≥0
3a≤2
,解得a∈[0,
2
3
]

故实数a的取值范围为a∈[0,
2
3
]
点评:本题考查了集合的包含关系的判断与应用,集合的交集的运算.考查了含有绝对值不等式的解法,一元二次不等式的解法.对于集合的交并补以及子集关系的元素,一般会借助数轴进行分析求解.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案