精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
6
3
,一个焦点为F(2
2
,0)

(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx-
5
2
交椭圆C于A,B两点,若点A,B都在以点M(0,3)为圆心的圆上,求k的值.
(Ⅰ)设椭圆的半焦距为c,则c=2
2
.              …(1分)
e=
c
a
=
6
3
,得 a=2
3
,从而b2=a2-c2=4.    …(4分)
所以,椭圆C的方程为
x2
12
+
y2
4
=1
.                    …(5分)
(Ⅱ)设A(x1,y1),B(x2,y2).
将直线l的方程代入椭圆C的方程,消去y得:4(1+3k2)x2-60kx+27=0.             …(7分)
由△=3600k2-16(1+3k2)×27>0,得k2
3
16
,且x1+x2=
15k
1+3k2
. …(9分)
设线段AB的中点为D,则xD=
15k
2+6k2
yD=kxD-
5
2
=
-5
2+6k2
.…(10分)
由点A,B都在以点(0,3)为圆心的圆上,得kMD•k=-1,…(11分)
即 
3+
5
2+6k2
-15k
2+6k2
•k=-1
,解得 k2=
2
9
,符合题意.  …(13分)
所以 k=±
2
3
.                          …(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案