精英家教网 > 高中数学 > 题目详情

 如图,四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E-PAD的体积;

(2)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

(3)证明:无论点E在BC边的何处,都有PE⊥AF.

(本小题满分14分)

(1)解:∵PA⊥底面ABCD,∴PA⊥AD,

∴三棱锥E-PAD的体积为.…………4分

   (2)当点E为BC的中点时,

EF与平面PAC平行.∵在△PBC中,

E、F分别为BC、PB的中点,

∴EF//PC 又EF平面PAC,

而PC平面PAC ∴EF//平面PAC     9分

   (3)证明:∵PA⊥平面ABCD,BE平面ABCD,

∴EB⊥PA.又EB⊥AB,AB∩AP=A,AB,AP平面PAB,

∴EB⊥平面PAB,

又AF平面PAB,∴AF⊥BE.

又PA=AB=1,点F是PB的中点,∴AF⊥PB,

        又∵PB∩BE=B,PB,BE平面PBE,∴AF⊥平面PBE.

∵PE平面PBE,∴AF⊥PE.……………………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案