精英家教网 > 高中数学 > 题目详情
5.能够把圆O:x2+y2=16的周长和面积同时分为相等的两部分的函数称为圆O的“和谐函数”,下列函数不是圆O的“和谐函数”的是(  )
A.f(x)=4x3+xB.f(x)=ex+e-xC.f(x)=tan$\frac{x}{2}$D.f(x)=ln$\frac{5-x}{5+x}$

分析 由“和谐函数”的定义及选项知,该函数若为“和谐函数”,其函数须为过原点的奇函数,由此逐项判断即可得到答案

解答 解:若函数f(x)是圆O的“和谐函数”,则函数的图象经过圆心且关于圆心对称,
由圆O:x2+y2=16的圆心为坐标原点,故函数f(x)是奇函数,
由于A中f(x)=x+4x3,C中f(x)=tan$\frac{x}{2}$,D中f(x)=1n$\frac{5-x}{5+x}$都为奇函数,而f(x)=ex+e-x为偶函数,不满足要求.
故选B

点评 本题考查的知识点是函数的奇偶性,其中根据新定义圆O的“和谐函数”判断出满足条件的函数为奇函数是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ex+ax+b在点(0,f(0))处的切线方程为x+y+1=0.
(Ⅰ)求a,b值,并求f(x)的单调区间;
(Ⅱ)证明:当x≥0时,f(x)>x2-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知($\frac{1}{2}$-ix)10=a0+a1x+a2x2+…+a10x10(i为虚数单位),则a0+$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{4}$+…+$\frac{{a}_{10}}{{2}^{10}}$=$-\frac{i}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上一点,F是右焦点,且△OPF是∠POF=120°的等腰三角形(O为坐标原点),则双曲线的离心率是$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=($\sqrt{3}$sin2x,sinx+cosx),$\overrightarrow{b}$=(1,sinx-cosx),其中x∈R,记函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(1)求f(x)的最小正周期;
(2)若f($\frac{θ}{2}$)=$\frac{\sqrt{3}}{2}$,且$\frac{2π}{3}$<θ<$\frac{7π}{6}$,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{\sqrt{3}}{2}$),离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)不垂直与坐标轴的直线l与椭圆C交于A,B两点,线段AB的垂直平分线交y轴于点P(0,$\frac{1}{3}$),若cos∠APB=-$\frac{1}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图是一个几何体的三视图,则该几何体可能是(  )
A.半球B.C.圆柱D.圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若二项式(x3+$\frac{1}{x}$)n的展开式中含有x8的项,则正整n的最小值为4•

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.偶函数f(x)=loga|x+b|在(-∞,0)上单调递减,则f(a+1)与f(2-b)的大小关系是(  )
A.f(a+1)>f(2-b)B.f(a+1)=f(2-b)C.f(a+1)<f(2-b)D.不能确定

查看答案和解析>>

同步练习册答案